, Volume 33, Issue 1, pp 57–62 | Cite as

Tungsten Oxide Thin Film Characterizations for Acetone Gas Detection

Original Paper


The gas sensing properties and topology of tungsten oxide thin films deposited by reactive-ion radio frequency magnetron sputtering at room temperature have been investigated. The abnormalities in behaviour of sensing film are observed when acetone gas is flowed over surface. The reduction reaction of surface and oxidation reaction of acetone gas have been studied. As the gas comes in contact with the surface, the molecules tend to reduce the surface, hence decreasing the resistance. The sensing film was annealed to 500 °C for 1 h for the purpose of achieving a suitable grain size for sensing to take place. Operational optimum temperature for sensing has been computed to be 260 °C. A grain size of 7.3 nm has been computed through analysis of AFM image and a film thickness of 100 nm has been calculated through surface profiler. The SEM image of the film demonstrates the grains developed on the surface. The XRD patterns reveal that the oxide showed up as WO2. It has been observed that the response percentage is approximately 30% for acetone vapour concentration of 20 ppm and approximately 18% for the concentration of 15 ppm. The response time of the sensor is approximately 5 min and the recovery time is 4 min.


Tungsten oxide thin films Surface metrology Topography Gas sensing Acetone gas detection 



Authors are thankful to the Dr. PrakashGopalan, Director, Thapar University, Patiala and Prof. SantanuChaudhury, Director, CSIR-CEERI, Pilani for providing the research facilities. Financial support provided by Department of Science and Technology (DST-INSPIRE Fellowship), New Delhi, Govt. of India is gratefully acknowledged.


  1. [1]
    X. L. Li, T-. J. Lou, X-. M. Sun, and Y-. D. Li, Highly Sensitive WO3 Hollow-Sphere Gas Sensors, Inorg Chem., 43(2004) 5442–5449.CrossRefGoogle Scholar
  2. [2]
    I. Jimenez, J. Arbiol, G. Dezanneau, A. Cornet, and J. R. Morante, Crystalline Structure, Defects and Gas Sensor Response to NO2 and H2S of Tungsten Trioxide Nanopowders, Sens Actuators B Chem., 93(2003) 475–485.CrossRefGoogle Scholar
  3. [3]
    Q. Q. Jia, H-. M. Ji, D-. H. Wang, X. Bai, X-. H. Sun, and Z-.G Jin, Exposed Facets Induced Enhanced Acetone Selective Sensing Property of Nanostructured Tungsten Oxide, J. Mater. Chem. A., 2(2014) 13602–13611.CrossRefGoogle Scholar
  4. [4]
    Z. Liu, M. Miyauchi, T. Yamazaki, and Y. Shen, Facile Synthesis and NO2 Gas Sensing of Tungsten Oxide Nanorods Assembled Microspheres, Sens Actuators B Chem., 140(2009) 514–519.CrossRefGoogle Scholar
  5. [5]
    C. S. Rout, M. Hegde, and C. N. R. Rao, H2S Sensors Based on Tungsten Oxide Nanostructures. Sens Actuators B Chem., 128(2008) 488–493.CrossRefGoogle Scholar
  6. [6]
    T. Jun, A. Hayashi, Y. Yamamoto, and M. Matsuoka, Detection of Dilute Nitrogen Dioxide and Thickness Effect of Tungsten Oxide Thin Film Sensors, Sens Actuators B Chem., 95(2003) 111–115.CrossRefGoogle Scholar
  7. [7]
    K. Aguir, C. Lemire, and D. B. B. Lollman, Electrical Properties of Reactively Sputtered WO3 Thin Films as Ozone Gas Sensor, Sens Actuators B Chem., 84(2002) 1–5.CrossRefGoogle Scholar
  8. [8]
    M. Penza, M. A. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci, and G. Cassano, Tungsten Trioxide (WO3) Sputtered Thin Films for a NO x Gas Sensor, Sens Actuators B Chem., 50(1998) 9–18.CrossRefGoogle Scholar
  9. [9]
    C. Cantalini, H. T. Sun, M. Faccio, M. Pelino, S. Santucci, L. Lozzi, and M. Passacantando, NO2 Sensitivity of WO3 Thin Film Obtained by High Vacuum Thermal Evaporation, Sens Actuators B Chem., 31(1996) 81–87.CrossRefGoogle Scholar
  10. [10]
    P. S. Patil, P. R. Patil, and E. A. Ennaoui (2000) Characterization of Ultrasonic Spray Pyrolyzed Tungsten Oxide Thin Films, Thin Solid Films., 370(1)(2000) 38–44.ADSCrossRefGoogle Scholar
  11. [11]
    S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili, and A. M. Al-Shukri, Effect of Preparation Conditions on the Optical and Thermochromic Properties of Thin Films of Tungsten Oxide. Sol. Energy Mater Sol. Cells., 71(2002) 313–325.CrossRefGoogle Scholar
  12. [12]
    G. Sberveglieri, L. Depero, S. Groppelli, and P. Nelli, WO3 Sputtered Thin Films for NOx Monitoring, Sens Actuators B Chem., 26(1995) 89–92.CrossRefGoogle Scholar
  13. [13]
    E. Ozkan, S-. H. Lee, P. Liu, C. E. Tracy, F. Z. Tepehan, J. R. Pitts and S. K. Deb Electrochromic and Optical Properties of Mesoporous Tungsten Oxide Films, Solid State Ion., 149(2002) 139–146.CrossRefGoogle Scholar
  14. [14]
    Bo Guo, Sisi Xu, Qing Yu, Feng Sui, Aihua Xu, and Ningning Zhou, Effects of Nitrogen Dioxide and Carbon Monoxide on the Determination of Sulfur Dioxide by Flue Gas Analyzer, MAPAN-J. Metrol. Soc. India, (2017) 1–7.Google Scholar
  15. [15]
    G. Lentka, Scalable Measurement System for Multiple Impedance Gas Sensors, MAPAN-J. Metrol. Soc. India, 32(3)(2017) 223–228.Google Scholar
  16. [16]
    J. G. Watson, J. C. Chow, R. J. Tropp, X. L. Wang, S. D. Kohl, and L. W. A. Chen, Standards and Traceability for Air Quality Measurements: Flow Rates and Gaseous Pollutants, MAPAN-J. Metrol. Soc. India, 28(2013) 167–179.Google Scholar
  17. [17]
    R. S. Khadayate, J. V. Sali, and P. P. Patil, Acetone Vapor Sensing Properties of Screen Printed WO3 Thick Films, Talanta, 72(2007) 1077–1081.CrossRefGoogle Scholar
  18. [18]
    M. Govender, D. E. Motaung, B. W. Mwakikunga, S. Umapathy, S. Sil, A. K. Prasad, A. G. J. Machatine, and H. W. Kunert, Operating Temperature Effect in WO3 Films for Gas Sensing, Sensors, IEEE., 3–6(2013) 1–4.Google Scholar
  19. [19]
    G.J. Li and S. Kawi, Synthesis, Characterization and Sensing Application of Novel Semiconductor Oxides, Talanta, 45(1998) 759–766.CrossRefGoogle Scholar
  20. [20]
    M. Penza, C. Martucci, and G. Cassano, NO x Gas Sensing Characteristics of WO3 Thin Films Activated by Noble Metals (Pd, Pt, Au) Layers, Sens Actuators B Chem., 50(1)(1998) 52–59.CrossRefGoogle Scholar
  21. [21]
    B. Frühberger, M. Grunze, and D. J. Dwyer, Surface Chemistry of H2S-Sensitive Tungsten Oxide Films, Sens Actuators B Chem., 31(3)(1996) 167–174.CrossRefGoogle Scholar
  22. [22]
    P. J. Shaver, Activated Tungsten Oxide Gas Detectors, Appl. Phys. Lett., 11(1967) 255–257.ADSCrossRefGoogle Scholar
  23. [23]
    M. Righettoni, A. Tricoli, and S. E. Pratsinis, Si: WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis, Anal. Chem., 82(2010) 3581–3587.CrossRefGoogle Scholar
  24. [24]
    S. Liu, F. Zhang, H. Li, T. Chen, and Y. Wang, Acetone Detection Properties of Single Crystalline Tungsten Oxide Plates Synthesized by Hydrothermal Method Using Cetyltrimethyl Ammonium Bromide Supermolecular Template, Sens Actuators B Chem., 162(2012) 259–268.CrossRefGoogle Scholar
  25. [25]
    K-. W. Kao, M-. C. Hsu, Y. –H. Chang, S. Gwo, and J. A. Yeh, A Sub-ppm Acetone Gas Sensor for Diabetes Detection Using 10 nm Thick Ultrathin InN FETs, Sensors., 12(2012) 7157–7168.CrossRefGoogle Scholar
  26. [26]
    A. Manolis, The Diagnostic Potential of Breath Analysis, Clin. Chem., 29(1983) 5–15.Google Scholar
  27. [27]
    T. D. C. Minh, D. R. Blake, and P. R. Galassetti, The Clinical Potential of Exhaled Breath Analysis for Diabetes Mellitus, Diabetes Res ClinPract, 97(2012) 195–205.CrossRefGoogle Scholar
  28. [28]
    M. Righettoni, and A. Tricoli, Toward Portable Breath Acetone Analysis for Diabetes Detection, J Breath Res., 5(3)(2011) 037109.CrossRefGoogle Scholar
  29. [29]
    A. K. Srivastava, Role of NPL-India in Nanotechnology and Nanometrology, MAPAN-J. Metrol. Soc. India, 28(2013) 263–272.Google Scholar
  30. [30]
    T. J. B. M., Janssen, and D. Roy, Nano-Science and Nano-Metrology for Societal Benefits, MAPAN-J. Metrol. Soc. India, 28(2013) 237–238.Google Scholar
  31. [31]
    K. Takamasu, Present Problems in Coordinate Metrology for Nano and Micro Scale Measurements, MAPAN-J. Metrol. Soc. India, 26(2011) 03–14.Google Scholar
  32. [32]
    J. Leena, V. Arumugham, R. P. Rajesh, and C. V. Muraleedharan, Nanoscale Surface Characterization of Ceramic/Ceramic Coated Metallic Biomaterials Using Chromatic Length Aberration Technique, MAPAN-J. Metrol. Soc. India, 31 (2016) 231–239.Google Scholar
  33. [33]
    G. Raina, Atomic Force Microscopy as a Nanometrology Tool: Some Issues and Future Targets, MAPAN-J. Metrol. Soc. India, 28(2013) 311–319.Google Scholar
  34. [34]
    A., Yasuhiko, M. Ando, S. Kanameishi, and S. Yokozeki, Micro 3D Measurement Method Using SEM, MAPAN-J. Metrol. Soc. India, 26(2011) 69–78.Google Scholar
  35. [35]
    V. Bonu, and A. Das, Size Distribution of SnO2 Quantum Dots Studied by UV–Visible, Transmission Electron Microscopy and X-Ray Diffraction, MAPAN-J. Metrol. Soc. India, 28(2013) 259–262.Google Scholar

Copyright information

© Metrology Society of India 2017

Authors and Affiliations

  1. 1.CSIR—Central Electronics Engineering Research InstitutePilaniIndia
  2. 2.Thapar UniversityPatialaIndia

Personalised recommendations