Skip to main content

Advertisement

Log in

A Concept of Fuel Tank Calibration Process Automation Within IoT Infrastructure

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The Internet-of-Things (IoT) and Cloud technologies today provide new options for remote measurement data collection, storage and processing. Fuel tank calibration process automation by adapting IoT infrastructure model is explored in the article. The impact of geometric and volumetric fuel tank calibration methods upon hardware and communication channels requirements in IoT infrastructure are considered in the paper. A distributed certified metrological laboratory establishment in the field of fuel tank calibration concept is introduced and explained by system architecture view description and sequence diagram of its operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. OIML R 71 Fixed storage tanks—general requirements, OIML (2008).

  2. ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories, ISO (2005).

  3. ISO 4269:2001 Petroleum and liquid petroleum products—tank calibration by liquid measurement, ISO (2001).

  4. X. Weiwei and W. Guodong, Design and implication of a system of measuring oil volume of underground tank, J. Linyi Norm. Univ., 29(3) (2007) 31–33.

    Google Scholar 

  5. Tank calibration system, http://en.censtar.com/product/tank-calibration-system.html (April 2015).

  6. Tank calibration, http://www.sankichina.com/product/tank-calibration-27.html (April 2015).

  7. Automatic calibration, http://www.asis.com.tr/en/products/petechtankautomation.aspx (April 2015).

  8. R.M. Barker and G. Parkin, Internet-enabled metrology systems, NPL report DEM-ES 012 (2006).

  9. R.A. Dudley, Internet calibration. Handbook of measuring system design (2005). http://www.internetcalibrations.com/[Dudley]%20Internet%20Calibration.pdf.

  10. A. Sand, M. Stevens and G. Parkin, Internet-enabled calibration: an analysis of different topologies and a comparison of two different approaches, IEEE Trans. Instrum. Meas., 56(5) (2007) 1986–1991.

    Article  Google Scholar 

  11. A. Sand, H. Slinde and T.A. Fjeldly, A secure approach to distributed internet-enabled metrology, IEEE Trans. Instrum. Meas., 56(5) (2007) 1979–1985.

    Article  Google Scholar 

  12. M. Jurcevic, R. Malaric and M. Borsic, Internet-enabled calibration services: aspects of laboratory information system security, Proceedings of IEEE instrumentation and measurement technology conference, Italy (2006) pp. 1570–1574.

  13. M. Saunoris, Applying the internet to metrology, Measurements, 1(41) (2008) 21–26.

    Google Scholar 

  14. M. Helmy A. Raouf, Rasha S.M. Ali and M.S. Gadelrab, Construction and remote calibration of an automated resistance measuring system, MAPAN-J. Metrol. Soc. India, 26(2) (2011) 125–131.

    Google Scholar 

  15. Z. Li, H. Li, Z. Zhang and P. Luo, An online calibration method for electronic voltage transformers based on IEC 61850-9-2, MAPAN-J. Metrol. Soc. India, 29(2) (2014) 97–105.

    Google Scholar 

  16. M. Halawa, A. Hasan, E. H. Shehab-Eldin and E. M. El-Refaee, Integrated calibration system for accurate AC current measurements up to 100 kHz, MAPAN-J. Metrol. Soc. India, 27(3) (2012) 143–148.

    Google Scholar 

  17. A. Meskuotiene, P. Kaskonas, S. Joneliunas and B.G. Urbonavicius, Conformity assessment and validation of automatic meter reading systems, MAPAN-J. Metrol. Soc. India (2016) doi:10.1007/s12647-016-0181-5.

    Google Scholar 

  18. Y. E. Haur, Z. Roziati, Z. Abidin and A. Rashid, Internet-based calibration of measurement instruments, Proceedings of international conference on computing & informatics—ICOCI 06, Kuala Lumpur (2006) pp. 1–6.

  19. T. Kobata, M. Kojima and H. Kajikawa, Development of remote calibration system for pressure standard, Measurement, 45(2012) 2482–2485.

    Article  Google Scholar 

  20. B.R. Dimitrijevic and M.M. Simic, Remote wireless calibration of equipment in the distributed measurement systems, Proceedings of international conference on telecommunications in modern satellite—TELSIKS 2007, Serbia (2007) pp. 479–482.

  21. Y. Hirao, S. Kunimatsu and T.Hamamoto, Wireless measurement system for ground-borne vibration and vibration amplifications in buildings, MAPAN-J. Metrol. Soc. India, 27(4) (2012) 231–239.

    Google Scholar 

  22. D. Amicone, A. Bernieri, L. Ferrigno and M. Laracca, A smart add-on device for the remote calibration of electrical energy meters, Proceedings of international instrumentation and measurement technology conference—I2MTC 2009, Singapore (2009) pp. 1599–1604.

  23. K. Hossain, M. Milton and N. Nimmo, Vision for metrology in the 2020s, National Physical Laboratory (2013).

  24. W. Volmer, Measuring instruments invisibly connected. What will legal metrology be in the year 2020, OIML (2002).

  25. Petroleum and liquid petroleum products—calibration of horizontal cylindrical tanks, EU: ISO 7507-4:2010(E), ISO (2010).

  26. Liquid tank calibration methodic (3–200 m3). BPM 8871101-96/1:2005, KTU Metrology Institute, Lithuania (2005) (in Lithuanian).

  27. V. Knyva and M. Knyva, New method for calibration of horizontal fuel tanks, Elektron. Elektrotech., 18(9) (2012) 91–94.

    Google Scholar 

  28. V. G. Domrachev and A.A. Skripnik, Automation of calibration of tanks in industrial production process control systems, Meas. Tech., 55(8) (2012) 876–882.

    Article  Google Scholar 

  29. H. Canbolat, A novel level measurement technique using three capacitive sensors for liquids, IEEE Trans. Instrum. Meas., 58(10) (2009) 3762–3768.

    Article  Google Scholar 

  30. V. Knyva and M. Knyva, Influence of 3D scanning data scattering to volume measurement of horizontal fuel tanks, Elektron. Elektrotech., 20(5) (2014) 72–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mindaugas Knyva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knyva, M., Knyva, V., Nakutis, Ž. et al. A Concept of Fuel Tank Calibration Process Automation Within IoT Infrastructure. MAPAN 32, 7–15 (2017). https://doi.org/10.1007/s12647-016-0193-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-016-0193-1

Keywords

Navigation