Advertisement

MAPAN

, Volume 32, Issue 1, pp 1–6 | Cite as

On the Attenuation of Light by a Polydimethylsiloxane (PDMS) Foam and Its Implementation as a Weight Sensor

  • Durgesh U. Tamhane
  • Amit R. Morarka
Original Paper
  • 256 Downloads

Abstract

We report a Polydimethylsiloxane (PDMS) foam based sensor for measuring weight. The transmission spectrum of PDMS foam is studied by subjecting it to compression in the direction of the incident light. The attenuation of transmitted light through the PDMS foam is discussed. An apparatus is fabricated which compresses or uncompresses the PDMS foam by loading or unloading weights which varies the intensity of the transmitted light. Observations show no hysteresis and good repeatability over a range of weights from 500 to 2800 g.

Keywords

PDMS Sponge Foam Weight sensor Light attenuation 

Notes

Acknowledgments

The authors would like to thank COSIST and the Department of Biochemistry and the School of Energy Studies, University of Pune. A special thanks to Dr. Govind Umarji of Center for Materials for Electronics Technology (C-MET) and Prof. Santosh Haram of the Department of Physical Chemistry, University of Pune. Authors are thankful to Dr. Subramaniam AnanthaKrishnan and Prof. Subhash Ghaisas of the Department of Electronics Science, University of Pune, for their thoughtful insight.

Supplementary material

12647_2016_185_MOESM1_ESM.png (632 kb)
Supplementary material 1 (PNG 632 kb)
12647_2016_185_MOESM2_ESM.png (918 kb)
Supplementary material 2 (PNG 918 kb)
12647_2016_185_MOESM3_ESM.png (632 kb)
Supplementary material 3 (PNG 631 kb)
12647_2016_185_MOESM4_ESM.png (923 kb)
Supplementary material 4 (PNG 923 kb)

References

  1. [1]
    Lorna J. Gibson and Michael F. Ashby, Cellular Solids: Structure and Properties; Cambridge University Press, (1999).Google Scholar
  2. [2]
    P. Fratzl and R. Weinkamer, Prog. Mater. Sci., 52 (2007) 1263.CrossRefGoogle Scholar
  3. [3]
    Y. Gu and N. Miki, A Microlter Utilizing a Polyethersulfone Porous Membrane with Nanopores J. Micromech. Microeng., 17 (2007) 2308–2315.ADSCrossRefGoogle Scholar
  4. [4]
    A. Janshoff, K. P. S. Dancil, C. Steinem, D. P. Greiner, V. S. Y. Lin, C. Gurtner, K. Motesharei, M. J. Sailor and M.R. Ghadiri, Macroporous p-Type Silicon Fabry Perot Layers. Fabrication, Characterization, and Applications in Biosensing J. Am. Chem. Soc., 120 (1998) 12108–12116.CrossRefGoogle Scholar
  5. [5]
    Daniel Klempner and Kurt C. Frisch, Handbook of Polymeric Foams and Foam Technology, eds. Hanser Publishers, Munich, Germany (1991).Google Scholar
  6. [6]
    Kuhn, J., H-P. Ebert, M. C. Arduini-Schuster, D. Büttner and J. Fricke, Thermal Transport in Polystyrene and Polyurethane Foam Insulations. International Journal of Heat and Mass Transfer, 35(7) (1992) 1795–1801.CrossRefGoogle Scholar
  7. [7]
    Christian Metzger, Elgar Fleisch, Jan Meyer, Mario Dansachmüller, Ingrid Graz, Martin Kaltenbrunner, Christoph Keplinger, Reinhard Schwödiauer and Siegfried Bauer, Flexible Foam Based Capacitive Sensor Arrays for Object Detection at Low Cost. Applied Physics Letters, 92 (2008) 013506.ADSCrossRefGoogle Scholar
  8. [8]
    H. Vandeparre, D. Watson and S. P. Lacour, Extremely Robust and Conformable Capacitive Pressure Sensors Based on Flexible Polyurethanefoams and Stretchable Metallization, Applied Physics Letters, 103 (2013) 204103.ADSCrossRefGoogle Scholar
  9. [9]
    John R. Dutcher and G. Alejandro, Soft Materials. Structure and Dynamics, Marcel Dekker, (2005), Pages 331–332.Google Scholar
  10. [10]
    Dahm DJ, Dahm KD, The Physics of Near infrared scattering, Near Infrared Technologies in the Agricultural and Food Industries (Williams P, Norris K, eds). American Association of Cereal Chemists, St. Paul, MN, (2001), Pages 1–17.Google Scholar
  11. [11]
    Masahiro Ueda, Sanae Mizuno and Akio Matsumura, Light Attenuation in a Semitransparent Foam Sheet—Thickness Measurement for Industrial Use, Optics and Lasers in Engineering, 24(4) (1996) 339–350.ADSCrossRefGoogle Scholar
  12. [12]
    Udea, Ishikawa, Chen, Nizuni, Tsukamoto, Thickness measurement of polyethylene foam by light attenuation. Rev. Laser Engng, (1993) 21–12.Google Scholar
  13. [13]
    Sung-Jin Choi, Tae-Hong Kwon, Hwon Im, Dong-Il Moon, David J. Baek, Myeong-Lok Seol, Juan P. Duarte and Yang-Kyu Choi, A Polydimethylsiloxane (PDMS) Sponge for the Selective Absorption of Oil from Water, ACS Appl. Mater. Interfaces, 3(12) (2011) 4551–4556.Google Scholar
  14. [14]
    J. Chen, R. Zjang and W. Wang, Fabricating Microporous PDMS Using Water in PDMS Emulsion, RSC Publishing Blogs Home. Chips and Tips, (2012).Google Scholar
  15. [15]
    Andres Diaz Lantada, Hernan Alarcon Iniesta, Beatriz Pareja Sanchez and Josefa Garcia Ruiz, Free Form Rapid Prototyped Porous PDMS Scaffolds Incorporating Growth Factors Promote Chondrogenesis, Advances in Materials Science and Engineering, (2014), Pages 1–10.Google Scholar
  16. [16]
    Kyong Je Cha and Dong Sung Kim, A Portable Pressure Pump for Microfluidiclab-on-a-Chip Systems Using a Porous Polydimethylsiloxane (PDMS) Sponge, Biomedical Microdevices, 13(5) (2011) 877–883.Google Scholar
  17. [17]
    Marc Ramuz, Benjamin C-K, Jeffrey B.-H. Tok and Zhenan Bao, Transparent, Optical, Pressure-Sensitive Artificial Skin for Large-Area Stretchable Electronics, Advanced Materials, 24 (2012) 3223–3227.Google Scholar
  18. [18]
    Alessandro Levi, Matteo Piovanelli, Silvano Furlan, Barbara Mazzolai and Lucia Beccai, Soft, Transparent, Electronic Skin for Distributed and Multiple Pressure Sensing, Sensors, 13 (2013) 6578–6604.CrossRefGoogle Scholar
  19. [19]
    Atul Kulkarni, Hyeongkeun Kim, Jaeboong Choi and Taesung Kim, A Novel Approach to Use of Elastomer for Monitoring of Pressure Using Plastic Optical Fiber, Rev. Sci. Instrum. 81 (2010) 045108.ADSCrossRefGoogle Scholar
  20. [20]
    Stefan C. B. Mannsfeld, Benjamin C-K. Tee, Randall M. Stoltenberg, Christopher V. H-H Chen, Soumendra Barman, Beinn V. O. Muir, Anatoliy N. Sokolov, Colin Reese and Zhenan Bao, Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers, Nature Materials, 9 (2010) 859–864.ADSCrossRefGoogle Scholar
  21. [21]
    Seif. M. Osman, Ebtisam H. Hasan and H. M. El-Hakeem, Evaluation of the Expanded Relative Uncertainty of NIS Developed Dead Weight Machine, MAPAN-J. Metrol. Soc India, 25(4) (2010) 245–250.Google Scholar
  22. [22]
    S. S. K. Titus, S. K. Dhulkhe, Poonam Yadav and Kamlesh K. Jain, Development and Performance Evaluation of a Dead Weight Force Machine in 2–50 N Range, MAPAN-J. Metrol. Soc India, 24(4) (2009) 225–232.Google Scholar
  23. [23]
    Sanjay Yadav, V. K. Gupta and A. K. Bandyopadhyay, Standardisation of Pressure Measurement Using Pressure Balance as Transfer Standard, MAPAN-J. Metrol. Soc India, 26(2) (2011) 133–151.Google Scholar
  24. [24]
    Han-Wook Song, In-Mook Choi, Sam-Yong Woo, Extended Usage of Pressure Balance Down to a Few Pa, MAPAN-J. Metrol. Soc India, 24 (2009) 119–124.Google Scholar
  25. [25]
    Polymer Data Handbook and J. Mark, Oxford Univ. Press, New York, (1999).Google Scholar
  26. [26]
    I D Johnston, D K McCluskey, C K L Tan and M C Tracey, Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering, J. Micromech. Microeng., 24 (2014) 035017.Google Scholar
  27. [27]
    D. P. J. Cotton, A. Popel, I. M. Graz and S. P. Lacour, Photopatterning the Mechanical Properties of Polydimethylsiloxane Films, Journal of Applied Physics, 109 (2011) 054905.ADSCrossRefGoogle Scholar

Copyright information

© Metrology Society of India 2016

Authors and Affiliations

  1. 1.Department of PhysicsSavitribai Phule Pune UniversityPuneIndia
  2. 2.Department of Electronic ScienceSavitribai Phule Pune UniversityPuneIndia

Personalised recommendations