Skip to main content
Log in

Traceable radiometric calibration of semiconductor detectors and their application for thermodynamic temperature measurement

  • Original Article
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The non-contact measurement of temperature by using the emitted thermal radiation has been an innovative field of measurement science and fundamental physics for more than a hundred years. It saw the first highlight in Gustav Kirchhoff’s principle of a blackbody with ideal emission characteristics and culminated in Max Planck’s formulation of the law of thermal radiation, the so-called Planck’s law, forming the foundation of quantum physics. A boost in accuracy was the development of semiconductor detectors and the cryogenic electrical substitution radiometer in the late 1970s. Semiconductor detectors, namely photodiodes, deliver an electrical current proportional to the absorbed optical radiation. Due to the measurements of thermal radiation over a wide range of temperature and wavelength, thermodynamic temperature measurements with radiometric methods have set benchmarks to all, the electrical, dimensional and optical metrology. The paper describes the measurement of the spectral responsivity of semiconductor detectors traceable to the SI units and their application for thermodynamic temperature measurement by the absolute measurement of thermal radiation using filter radiometers with calibrated spectral irradiance responsivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hartmann, High-Temperature Measurement Techniques for the Application in Photometry Radiometry and Thermometry, Physics Reports, 469 (2009) 205–269.

    Article  ADS  Google Scholar 

  2. J. Hollandt, J. Seidel, R. Klein, G. Ulm, A. Migdall and M. Ware, Primary Sources for Use in Radiometry, Experimental Methods in the Physical Sciences, 41, Optical Radiometry, Eds. A.C. Parr, R.U. Datla and J.L. Gardner, (2005) 213–290.

  3. O. Lummer and F. Kurlbaum, Bolometrische Untersuchungen, Annalen der Physik und Chemie, 46 (1892) 204–224.

    Article  ADS  Google Scholar 

  4. N.P. Fox, Trap Detectors and Their Properties, Metrologia, 28 (1991) 197–202.

    Article  ADS  Google Scholar 

  5. J.E. Martin, N.P. Fox and P.J. Key, A Cryogenic Radiometer for Absolute Radiometric Measurements, Metrologia, 21 (1985) 147–155.

    Article  ADS  Google Scholar 

  6. H. Preston-Thomas, The International Temperature Scale of 1990 (ITS-90), Metrologia, 27 (1990) 3–10.

    Article  ADS  Google Scholar 

  7. L. Werner, J. Fischer, U. Johannsen and J. Hartmann, Accurate Determination of the Spectral Responsivity of Silicon Trap Detectors between 238 nm and 1015 nm Using a Laser-Based Cryogenic Radiometer, Metrologia, 37 (2000) 279–284.

    Article  ADS  Google Scholar 

  8. P. Meindl, A.E. Klinkmüller, L. Werner, U. Johannsen and K. Grützmacher, New UV Spectral Responsivity Scale of the PTB Based on a Cryogenic Radiometer and an Argon Plasma Arc Radiation Source, Metrologia, 43 (2006) S72–S77.

    Article  ADS  Google Scholar 

  9. L. Werner and J. Hartmann, Calibration and Interpolation of the Spectral Responsivity of Silicon Photodiode Based Detectors, Sensors and Actuators, A 156 (2009) 185–190.

    Google Scholar 

  10. R. Goebel and M. Stock, Report on the Comparison CCPR-K2.b of Spectral Responsivity Measurements in the Range 300 nm to 1000 nm, Metrologia, 41 (2004) 02004.

    Article  ADS  Google Scholar 

  11. D.R. Taubert, R. Friedrich, J. Hartmann, P. Sperfeld and J. Hollandt, Long Term Stability of the Spectral Responsivity of Filter Radiometers at the PTB, Proc. of TEMPMEKO, Ed. D. Zvizdic, ISBN 953-6313-73-1, (2004) 977–982

  12. R. Friedrich and J. Fischer, A New Spectral Radiance Scale from 220 nm to 2500 nm, Metrologia, 37 (2000) 539–542.

    Article  ADS  Google Scholar 

  13. M. Stock, J. Fischer, R. Friedrich, H. J. Jung and B. Wende, The Double-Heatpipe Black Body: A High Accuracy Standard Source of Spectral Irradiance for Neasurements of T-T 90′, Metrologia, 32 (1995) 441–444.

    Article  ADS  Google Scholar 

  14. J. Hartmann, D.R. Taubert and J. Fischer, Measurement of T-T 90 Down to Zinc Point Temperatures with Absolute Filter Radiometry, Proc. of TEMPMEKO 2001, Eds. B. Fellmuth, J. Seidel and G. Scholz, ISBN 3-8007-2676-9, (2002) 377–382.

  15. D.R. Taubert, J. Hartmann, J. Hollandt and J. Fischer, Investigation of the Accuracy of the ITS-90 with Reference to the Thermodynamic Temperature in the Range from 400 °C to 660 °C, AIP Conference Proceedings, 684 (2003)(2004) 7–12.

    Article  ADS  Google Scholar 

  16. N. Noulkhow, R.D. Taubert, P. Meindl and J. Hollandt, Infrared Filter Radiometers for Thermodynamic Temperature Determination below 660 °C, Int. J. Thermophys, 30 (2009) 131–143.

    Article  Google Scholar 

  17. N. Noulkhow, R.D. Taubert, P. Meindl, L. Werner and J. Hollandt, Near Infrared Filter Radiometers for High-Accuracy Thermodynamic Temperature Measurements, Proc. of NEWRAD 2008 (2008) 281–282.

  18. R. Friedrich, J. Fischer and M. Stock, Accurate Calibration of Filter Radiometers Against a Cryogenic Radiometer Using a Trap Detector, Metrologia, 32 (1995) 509–513.

    Article  ADS  Google Scholar 

  19. D.R. Taubert, R. Friedrich, J. Hartmann and J. Hollandt, Improved Calibration Spectral of the Spectral Responsivity of Interference Filter Radiometers in the Visible and Near Infrared Spectral Range at PTB, Metrologia, 40 (2003) S35–S38.

    Article  ADS  Google Scholar 

  20. W. Wien and O. Lummer, Ann. Phys, 292 (1895) 451–456.

    Google Scholar 

  21. J. Hartmann, J. Fischer and J. Seidel, A Noncontact Technique Rroviding Improved Accuracy in Area Measurements of Radiometric Apertures, Metrologia, 37 (2000) 637–640.

    Article  ADS  Google Scholar 

  22. E. Ikonen, P. Toivanen and A. Lassila, A New Optical Method for High-Accuracy Determination of Aperture Area Metrologia, 35 (1998) 369–372.

    Article  ADS  Google Scholar 

  23. J. Hartmann, Advanced Comparator Method for Measuring Ultra Small Aperture Areas, Meas. Sci. Techn., 12 (2001)1678–1682.

    Article  ADS  Google Scholar 

  24. J.B. Fowler, R.D. Saundeau]rs and A.C. Parr, Summary of High-Accuracy Aperture-Area Measurement Capabilities at the NIST, Metrologia, 37 (2000) 621–623.

    Article  ADS  Google Scholar 

  25. M. Litorja, J. Fowler, J. Hartmann, N. Fox, M. Stock, A. Razet, B. Khlevnoy, E. Ikonen, M. Machacs and K. Doytchinov, Final Report on the CCPR-S2 Supplementary Comparison of Area Measurements of Apertures for Radiometry, Metrologia, 44 (2007) 02002.

    Article  ADS  Google Scholar 

  26. M. Stock, J. Fischer, R. Friedrich, H.J. Jung and B. Wende, Measurement of T-T 90 in the Range from 500 °C to 962 °C by Absolute Spectral Radiometry Employing a Cryogenic Radiometer and a Double Heatpipe Black Body, Proc. of TEMPMEKO, (1996) 19–24.

  27. J. Hartmann and L. Werner, Radiation Thermometry Towards the Triple Point of Water, Int. J. Thermophys., 29 (2008) 1052–1065.

    Article  Google Scholar 

  28. G. Machin, P. Bloembergen, J. Hartmann, M. Sadli and Y. Yamada, A Concerted International Project to Establish High-Temperature Fixed-Points for Primary Thermometry, Int. J. Thermophys., 28 (2007)1976–1982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, J., Hollandt, J., Meindl, P. et al. Traceable radiometric calibration of semiconductor detectors and their application for thermodynamic temperature measurement. MAPAN 25, 3–10 (2010). https://doi.org/10.1007/s12647-010-0003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-010-0003-0

Keywords

Navigation