Skip to main content

Advertisement

Log in

Upregulation of proBDNF in the Mesenteric Lymph Nodes in Septic Mice

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The immune status in the lymphatic system, especially mesenteric lymph nodes (MLNs), is critical to regulate the septic shock. Brain-derived neurotrophic factor (BDNF) in the enteric system has been reported to regulate enteric immunity. However, the role of its precursor, proBDNF, in the immune status of MLNs under sepsis condition is still unclear. This study aimed to characterize the expression pattern of proBDNF in MLNs after lipopolysaccharide (LPS) stimulation, and to investigate the association of pathogenesis of sepsis. LPS (20 mg/kg) was intraperitoneally injected to induce sepsis in mice. Survival curve analysis, routine blood tests, and liver and kidney function tests were performed to evaluate the severity of sepsis. QPCR and histological staining were performed to assess the mRNA levels of proinflammatory cytokines and degree of immune-inflammatory response in the MLNs. Furthermore, Western blotting, flow cytometry, and immunofluorescence were performed to examine the key molecules expression of proBDNF signaling. Intraperitoneal LPS injection significantly decreased the number of lymphocytes in blood but increased the number of T lymphocytes in MLNs. Serum alanine transaminase, aspartate transaminase, and blood urea nitrogen levels were increased in LPS-challenged mice compared to control mice. LPS administration upregulated proinflammatory cytokine gene expression and induced histological changes in the MLNs. LPS injection increased BDNF, proBDNF, and its receptor pan neutrophin receptor 75 (p75NTR) expression in MLNs. The increased proBDNF was mainly localized on CD3+ and CD4+ T cells in the medulla of MLNs. LPS-induced sepsis upregulated proBDNF expression in medulla T cells of MLNs. ProBDNF upregulation may be involved in the pathogenesis of septic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Adams JM, Hauser CJ, Adams CA, Xu DZ, Livingston DH et al (2001) Entry of gut lymph into the circulation primes rat neutrophil respiratory burst in hemorrhagic shock. Crit Care Med 29:2194

    Article  CAS  PubMed  Google Scholar 

  • Berzi A, Ayata CK, Cavalcante P, Falcone C, Candiago E et al (2008) BDNF and its receptors in human myasthenic thymus: implications for cell fate in thymic pathology. J Neuroimmunol 197:128–139

    Article  CAS  PubMed  Google Scholar 

  • Braun A, Lommatzsch M, Mannsfeldt A, Fischer A et al (1999) Cellular sources of enhanced brain-derived neurotrophic factor production in a mouse model of allergic inflammation. Am J Respir Cell Mol Biol 21:537–546

    Article  CAS  PubMed  Google Scholar 

  • Capuron L, Miller AH (2011) Immune system to brain signaydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mous: neuropsychopharmacological implications. Pharmacol Ther 130:226–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZY, Patel PD, Sant G, Meng CX, Teng KK et al (2004) Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J NEUROSCI 24:4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen FX, Yu YB, Wang P, Dong YY, Wang TF et al (2014) Brain-derived neurotrophic factor accelerates gut motility in slow-transit constipation. Acta Physiol 146:S–89-S-89

    Google Scholar 

  • Chen J, Li CR, Yang H, Liu J, Zhang T et al (2016) proBDNF Attenuates hippocampal neurogenesis and induces learning and memory deficits in aged mice. Neurotox Res 29:47–53

    Article  CAS  PubMed  Google Scholar 

  • Clark Jessica A, Coopersmith CM (2007) Intestinal crosstalk: a new paradigm for understanding the gut as the “motor” of critical illness. Shock 28:384–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891

    Article  CAS  PubMed  Google Scholar 

  • Coulie B, Szarka LA, Camilleri M, Burton DD, Mckinzie S et al (2000) Recombinant human neurotrophic factors accelerate colonic transit and relieve constipation in humans. Gastroenterology 119:41–50

    Article  CAS  PubMed  Google Scholar 

  • Deinhardt K, Chao MV (2014) Shaping neurons: long and short range effects of mature and proBDNF signaling upon neuronal structure. Neuropharmacology 76:603–609

    Article  CAS  PubMed  Google Scholar 

  • Deitch EA (2001) Role of the gut lymphatic system in multiple organ failure. Curr Opin Crit Care 7:92–98

    Article  CAS  PubMed  Google Scholar 

  • Deitch EA (2010) Gut lymph and lymphatics: a source of factors leading to organ injury and dysfunction. Ann N Y Acad Sci 1207:E103–E111

    Article  PubMed  Google Scholar 

  • Deitch EA, Xu D, Franko L, Ayala A, Chaudry IH (1994) Evidence favoring the role of the gut as a cytokine-generating organ in rats subjected to hemorrhagic shock. Shock 1:141–145

    Article  CAS  PubMed  Google Scholar 

  • Duan L, Chen BY, Sun XL, Luo ZL, Rao ZR et al (2013) LPS-induced proNGF synthesis and release in the N9 and BV2 microglial cells: a new pathway underling microglial toxicity in neuroinflammation. PLoS One 8:e73768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta G, Zhang P, Liu B (2010) The lipopolysaccharide Parkinson’s disease animal model: mechanistic studies and drug discovery. Fundam Clin Pharmacol 22:453–464

    Article  CAS  Google Scholar 

  • Fan YJ, Wu LL, Li HY, Wang YJ, Zhou XF (2008) Differential effects of pro-BDNF on sensory neurons after sciatic nerve transection in neonatal rats. Eur J Neurosci 27:2380–2390

    Article  PubMed  Google Scholar 

  • Fanous MY, Phillips AJ, Windsor JA (2007) Mesenteric lymph: the bridge to future management of critical illness. Jop 8:374–399

    PubMed  Google Scholar 

  • Ferreira Mello BS, Monte AS, Mcintyre RS, Soczynska JK, Custódio CS et al (2013) Effects of doxycycline on depressive-like behavior in mice after lipopolysaccharide (LPS) administration. J Psychiatr Res 47:1521–1529

    Article  Google Scholar 

  • Fox EA, Murphy MC (2008) Factors regulating vagal sensory development: potential role in obesities of developmental origin. Physiol Behav 94:90–104

    Article  CAS  PubMed  Google Scholar 

  • Gareau MG, Wine E, Rodrigues DM, Joon HC, Whary MT et al (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60:307–317

    Article  PubMed  Google Scholar 

  • Gatt M, Reddy BS, Macfie J (2010) Review article: bacterial translocation in the critically ill--evidence and methods of prevention. Aliment Pharmacol Ther 25:741–757

    Article  Google Scholar 

  • Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE, Hui JJ et al (2001) Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol 166:6952

    Article  CAS  PubMed  Google Scholar 

  • Hu ZL, Cui YH, Qiao XQ, He XW, Li F et al (2018) Silencing miR-150 ameliorates experimental autoimmune encephalomyelitis. Front Neurosci 12:465

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibáñez CF, Simi A (2012) p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends Neurosci 35:431–440

    Article  CAS  PubMed  Google Scholar 

  • Ji MH, Yuan HM, Feng SW, Xia JY, Yang JJ. (2018) The p75 neurotrophin receptor might mediate sepsis-induced synaptic and cognitive impairments. Behav Brain Res 347:339–349

  • Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T et al (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshimizu H, Hazama S, Hara T, Ogura A, Kojima M (2010) Distinct signaling pathways of precursor BDNF and mature BDNF in cultured cerebellar granule neurons. Neurosci Lett 473:229–232

    Article  CAS  PubMed  Google Scholar 

  • Langness S, Costantini TW, Morishita K, Eliceiri BP, Coimbra R. (2016) Modulating the biologic activity of mesenteric lymph after traumatic shock decreases systemic inflammation and end organ injury. Plos One 11(12): e0168322

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    Article  CAS  PubMed  Google Scholar 

  • Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD et al (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19:1196–1198

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Liu J, Manaph NP, Bobrovskaya L, Zhou XF (2017) ProBDNF inhibits proliferation, migration and differentiation of mouse neural stem cells. Brain Res 1668:46–55

    Article  CAS  PubMed  Google Scholar 

  • Lommatzsch M, Braun A, Mannsfeldt A, Botchkarev VA, Botchkareva NV et al (1999) Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived Neurotrophic functions. AM J PATHOL 155:1183–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucini C, Maruccio L, Girolamo PD, Vega J, Castaldo L (2002) Localisation of neurotrophin – containing cells in higher vertebrate intestine. Anat Embryol 205:135–140

    Article  CAS  Google Scholar 

  • Luo C, Zhong XL, Zhou FH, Li JY, Zhou P et al (2016) Peripheral brain derived neurotrophic factor precursor regulates pain as an inflammatory mediator. Sci Rep 6:27171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeder MT, Hunziker P (2009) Sepsis-associated myocardial dysfunction: from bedside to bench. J Organ Dysfunct 5:119–128

    Article  Google Scholar 

  • Manu SH, Gary SP, Mitchell LL, Seymour CW, Liu VX et al (2016) Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3). J Am Med Assoc 315(8):775–787

    Article  CAS  Google Scholar 

  • Marler Katharine JM, Subathra P, Emma RB, Corinna W, Uwe D (2010) Pro-neurotrophins secreted from retinal ganglion cell axons are necessary for ephrinA-p75NTR-mediated axon guidance. Neural Dev 5:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P et al (2000) Production of neurotrophins by activated T cells: implications for neu roprotective autoimmunity. J Autoimmun 15:331–345

    Article  CAS  PubMed  Google Scholar 

  • Moore FA, Moore EE, Foggetti R et al (1990) Gut bacterial translocation via the portal vein. J TRAUMA 30:925

    Article  Google Scholar 

  • Moore EE, Moore FA, Franciose RJ et al (1994) The postischemic gut serves as a priming bed for circulating neutrophils that provoke multiple organ failure. J Trauma 37:881–887

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Park DI, Kim HJ, Cho YK, Park SM (2009) the relationship between small-intestinal bacterial overgrowth and intestinal permeability in patients with irritable bowel syndrome. GUT LIVER 3:174–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Senthil M, Brown M, Xu DZ, Lu Q, Feketeova E et al (2006) Gut-lymph hypothesis of systemic inflammatory response syndrome/multiple-organ dysfunction syndrome: validating studies in a porcine model. J Trauma 60:958–965

    Article  PubMed  Google Scholar 

  • Sloan EK, Nguyen CT, Cox BF, Tarara RP, Capitanio JP et al (2008) SIV infection decreases sympathetic innervation of primate lymph nodes: the role of neurotrophins. Brain Behav Immun 22:185–194

    Article  CAS  PubMed  Google Scholar 

  • Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N et al (2010) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558:263–275

    Article  CAS  Google Scholar 

  • Sun Y, Lim Y, Li F, Liu S, Lu JJ et al (2012) ProBDNF collapses neurite outgrowth of primary neurons by activating RhoA. PLoS One 7:e35883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng HK, Teng KK, Lee R, Wright S, Tevar S et al (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuon T, Valvassori SS, Dal Pont GC, Paganini CS, Pozzi BG et al (2014) Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson’s disease. Brain Res Bull 108:106–112

    Article  CAS  PubMed  Google Scholar 

  • Upperman JS, Deitch EA, Guo W, Lu Q, Xu D et al (1998) Post-hemorrhagic shock mesenteric lymph is cytotoxic to endothelial cells and activates neutrophils. Shock 10:407

    Article  CAS  PubMed  Google Scholar 

  • Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K et al (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34:344–353

    Article  PubMed  Google Scholar 

  • Wong I, Liao H, Bai XS, Antony Z, Zhong JH et al (2010) ProBDNF inhibits infiltration of ED1+ macrophages after spinal cord injury. Brain Behav Immun 24:585–597

    Article  CAS  PubMed  Google Scholar 

  • Wu RQ, Dong WF, Qiang XL, Wang HC et al (2009) Orexigenic hormone ghrelin ameliorates gut barrier dysfunction in sepsis in rats. Crit Care Med 37:2421–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zallen G, Moore EE, Tamura DY, Johnson JL, Biffl WL et al (2000) Hypertonic saline resuscitation abrogates neutrophil priming by mesenteric lymph. J Trauma Acute Care Surg 48:45–48

    Article  CAS  Google Scholar 

  • Zeng N, Xu JM, Yao W, Li SB, Ruan WY et al (2017) Brain-derived neurotrophic factor attenuates septic myocardial dysfunction via eNOS/NO pathway in Rats. Oxidative Med Cell Longev 2017:1721434

    Article  CAS  Google Scholar 

  • Zhou XF, Song XY, Zhong JH, Barati S, Zhou FHH et al (2010) Distribution and localization of pro-brain-derived neurotrophic factor-like immunoreactivity in the peripheral and central nervous system of the adult rat. J Neurochem 91:704–715

    Article  CAS  Google Scholar 

  • Zhou L, Xiong J, Lim Y, Ruan Y, Huang CH et al (2013) Upregulation of blood proBDNF and its receptors in major depression. J Affect Disord 150:776–784

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Xiong J, Ruan CS, Ye R, Liu D et al (2017) ProBDNF/p75NTR/sortilin pathway is activated in peripheral blood of patients with alcohol dependence. Transl Psychiatry 7:2

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (81771354 and to RD, 81873770 to LH), and the Hunan Province Science Foundation for Young Scientists of China (2018JJ3864 to SW).

Author information

Authors and Affiliations

Authors

Contributions

ZW conducted the study, data collection, data analysis, and manuscript preparation; JW and FZ conducted the study, data collection, and data analysis; YL helped to do the animals-related experiments; YY and JS helped with data analysis; HL and SW helped to design and analyze the data; XFZ provided reagents, data interpretation, and revised manuscripts; ZH and RD were responsible for design and interpretation of the work, data collection, data analysis, and manuscript drafting; all authors had a final approval of the manuscript submission.

Corresponding authors

Correspondence to Zhao-Lan Hu or Ru-Ping Dai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, JL., Zhong, F. et al. Upregulation of proBDNF in the Mesenteric Lymph Nodes in Septic Mice. Neurotox Res 36, 540–550 (2019). https://doi.org/10.1007/s12640-019-00081-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-00081-3

Keywords

Navigation