Skip to main content
Log in

Mechanism Underlying Organophosphate Paraoxon-Induced Kinetic Tremor

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Organophosphates (OPs) inhibit cholinesterase and hyperactivate the acetylcholinergic nervous system in the brain, causing motor disorders (e.g., tremor and seizures). Here, we performed behavioral and immunohistochemical studies in mice and rats to investigate the tremorgenic mechanism of paraoxon, an active metabolite of parathion. Treating animals with paraoxon (0.15–0.6 mg/kg, i.p.) elicited kinetic tremor in a dose-dependent manner. Expressional analysis of Fos protein, a biomarker of neural excitation, revealed that a tremorgenic dose of paraoxon (0.6 mg/kg) significantly and region-specifically elevated Fos expression in the cerebral cortex (e.g., sensory cortex), hippocampal CA1, globus pallidus, medial habenula, and inferior olive (IO) among 48 brain regions examined. A moderate increase in Fos expression was also observed in the dorsolateral striatum while the change was not statistically significant. Paraoxon-induced tremor was inhibited by the nicotinic acetylcholine (nACh) receptor antagonist mecamylamine (MEC), but not affected by the muscarinic acetylcholine receptor antagonist trihexyphenidyl (THP). In addition, paraoxon-induced Fos expression in the IO was also antagonized by MEC, but not by THP, and lesioning of the IO markedly suppressed tremorgenic action of paraoxon. The present results suggest that OPs elicit kinetic tremor at least partly by activating IO neurons via nACh receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrams HK, Leonard AR (1950) Toxicology of organic phosphate insecticides. Calif Med 73:183–186

    PubMed  PubMed Central  CAS  Google Scholar 

  • Alavanja MC, Hoppin JA, Kamel F (2004) Health effects of chronic pesticide exposure: cancer and neurotoxicity. Annu Rev Public Health 25:155–197

    Article  PubMed  Google Scholar 

  • Arima H, Sobue K, So M, Morishima T, Ando H, Katsuya H (2003) Transient and reversible parkinsonism after acute organophosphate poisoning. J Toxicol Clin Toxicol 41:67–70

    Article  PubMed  CAS  Google Scholar 

  • Bastlund JF, Berry D, Watson WP (2005) Pharmacological and histological characterisation of nicotine-kindled seizures in mice. Neuropharmacology 48:975–983

    Article  PubMed  CAS  Google Scholar 

  • Batini C, Buisseret-Delmas C, Conrath-Verrier M (1981) Harmaline-induced tremor. I. Regional metabolic activity as revealed by [14C]2-deoxyglucose in cat. Exp Brain Res 42:371–382

    Article  PubMed  CAS  Google Scholar 

  • Bernard JF, Buisseret-Delmas C, Laplante S (1984) Inferior olivary neurons: 3-acetylpyridine effects on glucose consumption, axonal transport, electrical activity and harmaline-induced tremor. Brain Res 322:382–387

    Article  PubMed  CAS  Google Scholar 

  • Bhatt MH, Elias MA, Mankodi AK (1999) Acute and reversible parkinsonism due to organophosphate pesticide intoxication: five cases. Neurology 52:1467–1471

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, Forward A, Marsh S, Caulfield MP (1997) Antagonist discrimination between ganglionic and ileal muscarinic receptors. Br J Pharmacol 120:444–446

    Article  PubMed Central  Google Scholar 

  • Cho AK, Haslett WL, Jenden DJ (1962) The peripheral actions of oxotremorine, a metabolite of tremorine. J Pharmacol Exp Ther 138:249–257

    PubMed  CAS  Google Scholar 

  • Colombo SF, Mazzo F, Pistillo F, Gotti C (2013) Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem Pharmacol 86:1063–1073

    Article  PubMed  CAS  Google Scholar 

  • Dam M, Wamsley JK, Rapoport SI, London ED (1982) Effects of oxotremorine on local glucose utilization in the rat cerebral cortex. J Neurosci 2:1072–1078

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729

    Article  PubMed  CAS  Google Scholar 

  • Dow-Edwards D, Dam M, Peterson JM, Rapoport SI, London ED (1981) Effect of oxotremorine on local cerebral glucose utilization in motor system regions of the rat brain. Brain Res 226:281–289

    Article  PubMed  CAS  Google Scholar 

  • Faure P, Tolu S, Valverde S, Naude J (2014) Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience 282c:86–100

    Article  CAS  Google Scholar 

  • Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Gomita Y, Suemaru K, Furuno K, Araki Y (1989) Nicotine-induced tail-tremor and drug effects. Pharmacol Biochem Behav 34:817–821

    Article  PubMed  CAS  Google Scholar 

  • Gomita Y, Suemaru K, Furuno K, Araki Y (1991) Tail-tremor induced by exposure to cigarette smoke in rats. Pharmacol Biochem Behav 40:453–455

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491

    Article  PubMed  CAS  Google Scholar 

  • Herrera DG, Robertson HA (1996) Activation of c-fos in the brain. Prog Neurobiol 50:83–107

    Article  PubMed  CAS  Google Scholar 

  • Hoffman GE, Lyo D (2002) Anatomical markers of activity in neuroendocrine systems: are we all ‘fos-ed out’? J Neuroendocrinol 14:259–268

    Article  PubMed  CAS  Google Scholar 

  • Iha HA, Kunisawa N, Tokudome K, Mukai T, Kinboshi M, Shimizu S, Ohno Y (2016) Immunohistochemical analysis of Fos protein expression for exploring brain regions (foci) related to central nervous system (CNS) disorders and drug actions. In: Philippu A (ed) In vivo neuropharmacology and neurophysiology. Springer, New York, pp 389–408

    Google Scholar 

  • Iha HA, Kunisawa N, Shimizu S, Tokudome K, Mukai T, Kinboshi M, Ikeda A, Ito H, Serikawa T, Ohno Y (2017) Nicotine elicits convulsive seizures by activating amygdalar neurons. Front Pharmacol 8:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeyaratnam J (1990) Acute pesticide poisoning: a major global health problem. World Health Stat Q 43:139–144

    PubMed  CAS  Google Scholar 

  • Kalistekorhonen E, Ylitalo P, Hanninen O, Raushel FM (1993) Phosphotriesterase decreases paraoxon toxicity in mice. Toxicol Appl Pharmacol 121:275–278

    Article  CAS  Google Scholar 

  • Kovacs KJ (1998) c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int 33:287–297

    Article  PubMed  CAS  Google Scholar 

  • Kunisawa N, Iha HA, Shimizu S, Tokudome K, Mukai T, Kinboshi M, Serikawa T, Ohno Y (2016) Nicotine evokes kinetic tremor by activating the inferior olive via alpha7 nicotinic acetylcholine receptors. Behav Brain Res 314:173–180

    Article  PubMed  CAS  Google Scholar 

  • Kunisawa N, Iha HA, Nomura Y, Onishi M, Matsubara N, Shimizu S, Ohno Y (2017) Serotonergic modulation of nicotine-induced kinetic tremor in mice. J Pharmacol Sci 134:131–138

    Article  PubMed  CAS  Google Scholar 

  • Kunisawa N, Shimizu S, Kato M, Iha HA, Iwai C, Hashimura M, Ogawa M, Kawaji S, Kawakita K, Abe K, Ohno Y (2018) Pharmacological characterization of nicotine-induced tremor: responses to anti-tremor and anti-epileptic agents. J Pharmacol Sci 137:162–169

    Article  PubMed  CAS  Google Scholar 

  • Kwon OD, Kim HK (2014) Parkinsonism as late sequela of organophosphate intoxication. J Emerg Trauma Shock 7:124–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Parsons L, Pope C (2015) Comparative effects of parathion and chlorpyrifos on endocannabinoid and endocannabinoid-like lipid metabolites in rat striatum. Neurotoxicology 50:20–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Machaalani R, Kashi PK, Waters KA (2010) Distribution of nicotinic acetylcholinereceptor subunits alpha7 and beta2 in the human brainstem and hippocampalformation. J Chem Neuroanat 40:223–231

    Article  PubMed  CAS  Google Scholar 

  • Matthews RT, Chiou CY (1979) Effects of diethylcholine in two animal models of Parkinsonism tremors. Eur J Pharmacol 56:159–162

    Article  PubMed  CAS  Google Scholar 

  • Miller AL, Medina MA (1986) Cerebral metabolic effects of organophosphorus anticholinesterase compounds. Metab Brain Dis 1:147–156

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi M, Ghani E, Ghasemi A, Khoshbaten A, Asgari A (2008) Synaptosomal GABA uptake decreases in paraoxon-treated rat brain. Toxicology 244:42–48

    Article  PubMed  CAS  Google Scholar 

  • Morgan JI, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science (New York, NY) 237:192–197

    Article  CAS  Google Scholar 

  • Nelson SR, Doull J, Tockman BA, Cristiano PJ, Samson FE (1978) Regional brain metabolism changes induced by acetylcholinesterase inhibitors. Brain Res 157:186–190

    Article  PubMed  CAS  Google Scholar 

  • Ohno Y, Shimizu S, Imaki J, Ishihara S, Sofue N, Sasa M, Kawai Y (2008) Anticataleptic 8-OH-DPAT preferentially counteracts with haloperidol-induced Fos expression in the dorsolateral striatum and the core region of the nucleus accumbens. Neuropharmacology 55:717–723

    Article  PubMed  CAS  Google Scholar 

  • Ohno Y, Shimizu S, Harada Y, Morishita M, Ishihara S, Kumafuji K, Sasa M, Serikawa T (2009a) Regional expression of Fos-like immunoreactivity following seizures in Noda epileptic rat (NER). Epilepsy Res 87:70–76

    Article  PubMed  CAS  Google Scholar 

  • Ohno Y, Shimizu S, Imaki J (2009b) Effects of tandospirone, a 5-HT1A agonistic anxiolytic agent, on haloperidol-induced catalepsy and forebrain Fos expression in mice. J Pharmacol Sci 109:593–599

    Article  PubMed  CAS  Google Scholar 

  • Ohno Y, Ishihara S, Mashimo T, Sofue N, Shimizu S, Imaoku T, Tsurumi T, Sasa M, Serikawa T (2011) Scn1a missense mutation causes limbic hyperexcitability and vulnerability to experimental febrile seizures. Neurobiol Dis 41:261–269

    Article  PubMed  CAS  Google Scholar 

  • Ohno Y, Okano M, Masui A, Imaki J, Egawa M, Yoshihara C, Tatara A, Mizuguchi Y, Sasa M, Shimizu S (2012) Region-specific elevation of D1 receptor-mediated neurotransmission in the nucleus accumbens of SHR, a rat model of attention deficit/hyperactivity disorder. Neuropharmacology 63:547–554

    Article  PubMed  CAS  Google Scholar 

  • Ohno Y, Shimizu S, Tatara A, Imaoku T, Ishii T, Sasa M, Serikawa T, Kuramoto T (2015a) Hcn1 is a tremorgenic genetic component in a rat model of essential tremor. PLoS One 10:e0123529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohno Y, Shimizu S, Tokudome K, Kunisawa N, Sasa M (2015b) New insight into the therapeutic role of the serotonergic system in Parkinson’s disease. Prog Neurobiol 134:104–121

    Article  PubMed  CAS  Google Scholar 

  • Okuno H (2011) Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neurosci Res 69:175–186

    Article  PubMed  CAS  Google Scholar 

  • Reji KK, Mathew V, Zachariah A, Patil AK, Hansdak SG, Ralph R, Peter JV (2016) Extrapyramidal effects of acute organophosphate poisoning. Clin Toxicol (Phila) 54:259–265

    Article  CAS  Google Scholar 

  • Samson FE, Pazdernik TL, Cross RS, Giesler MP, Mewes K, Nelson SR, McDonough JH (1984) Soman induced changes in brain regional glucose use. Fundam Appl Toxicol 4:S173–S183

    Article  PubMed  CAS  Google Scholar 

  • Schrag A, Schelosky L, Scholz U, Poewe W (1999) Reduction of Parkinsonian signs in patients with Parkinson’s disease by dopaminergic versus anticholinergic single-dose challenges. Mov Disord 14:252–255

    Article  PubMed  CAS  Google Scholar 

  • Shih PY, Engle SE, Oh G, Deshpande P, Puskar NL, Lester HA, Drenan RM (2014) Differential expression and function of nicotinic acetylcholine receptors insubdivisions of medial habenula. J Neurosci 34:9789–9802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimizu S, Mizuguchi Y, Sobue A, Fujiwara M, Morimoto T, Ohno Y (2015) Interaction between anti-Alzheimer and antipsychotic drugs in modulating extrapyramidal motor disorders in mice. J Pharmacol Sci 127:439–445

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Sogabe S, Yanagisako R, Inada A, Yamanaka M, Iha HA, Ohno Y (2017) Glycine-binding site stimulants of NMDA receptors alleviate extrapyramidal motor disorders by activating the nigrostriatal dopaminergic pathway. Int J Mol Sci 18:E1416

    Article  PubMed  CAS  Google Scholar 

  • Shrot S, Ramaty E, Biala Y, Bar-Klein G, Daninos M, Kamintsky L, Makarovsky I, Statlender L, Rosman Y, Krivoy A, Lavon O, Kassirer M, Friedman A, Yaari Y (2014) Prevention of organophosphate-induced chronic epilepsy by early benzodiazepine treatment. Toxicology 323:19–25

    Article  PubMed  CAS  Google Scholar 

  • Tatara A, Shimizu S, Masui A, Tamura M, Minamimoto S, Mizuguchi Y, Ochiai M, Mizobe Y, Ohno Y (2015) Atypical antipsychotic properties of AD-6048, a primary metabolite of blonanserin. Pharmacol Biochem Behav 138:14–19

    Article  PubMed  CAS  Google Scholar 

  • Thompson JH (1955) Cholinesterase inhibiting insecticides (parathion): chemical and clinical aspects. Calif Med 82:91–95

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wess J, Lambrecht G, Moser U, Mutschler E (1984) A comparison of the antimuscarinic effects of pirenzepine and N-methylatropine on ganglionic and vascular muscarinic receptors in the rat. Life Sci 35:553–560

    Article  PubMed  CAS  Google Scholar 

  • Yelamos F, Diez F, Martin C, Blanco JL, Garcia MJ, Lardelli A, Pena JF (1992) Acute organophosphate insecticide poisonings in the province of Almeria. A study of 187 cases. Med Clin (Barc) 98:681–684

    CAS  Google Scholar 

Download references

Funding

This study was supported in part by a research grant from the Smoking Research Foundation (YO) and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (YO:17K08324, SS:16K21501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Ohno.

Ethics declarations

The experimental protocols were approved by the Experimental Animal Research Committee at the Osaka University of Pharmaceutical Sciences.

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iha, H.A., Kunisawa, N., Shimizu, S. et al. Mechanism Underlying Organophosphate Paraoxon-Induced Kinetic Tremor. Neurotox Res 35, 575–583 (2019). https://doi.org/10.1007/s12640-019-0007-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-0007-7

Keywords

Navigation