Skip to main content

Advertisement

Log in

Ultrastructural Analysis of Thalamus Damages in a Mouse Model of Osmotic-Induced Demyelination

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

A murine model used to investigate the osmotic demyelination syndrome (ODS) demonstrated ultrastructural damages in thalamus nuclei. Following chronic hyponatremia, significant myelinolysis was merely detected 48 h after the rapid reinstatement of normonatremia (ODS 48 h). In ODS samples, oligodendrocytes and astrocytes revealed injurious changes associated with a few cell deaths while both cell types seemed to endure a sort of survival strategy: (a) ODS 12 h oligodendrocytes displayed nucleoplasm with huge heterochromatic compaction, mitochondria hypertrophy, and most reclaimed an active NN cell aspect at ODS 48 h. (b) Astrocytes responded to the osmotic stress by overall cell shrinkage with clasmatodendrosis, these changes accompanied nucleus wrinkling, compacted and segregated nucleolus, destabilization of astrocyte-oligodendrocyte junctions, loss of typical GFAP filaments, and detection of round to oblong woolly, proteinaceous aggregates. ODS 48 h astrocytes regained an active nucleus aspect, without restituting GFAP filaments and still contained cytoplasmic proteinaceous deposits. (c) Sustaining minor shrinking defects at ODS 12 h, neurons showed slight axonal injury. At ODS 48 h, neuron cell bodies emerged again with deeply indented nucleus and, owing nucleolus translational activation, huge amounts of polysomes along with secretory-like activities. (d) In ODS, activated microglial cells got stuffed with huge lysosome bodies out of captures cell damages, leaving voids in interfascicular and sub-vascular neuropil. Following chronic hyponatremia, the murine thalamus restoration showed macroglial cells acutely turned off transcriptional and translational activities during ODS and progressively recovered activities, unless severely damaged cells underwent cell death, leading to neuropil disruption and demyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ΔSNa+ :

Gradient of serum Na+

BBB:

Blood-brain barrier

CNS:

Central nervous system

GFAP:

Glial fibrillary acidic protein

HN:

Hyponatremic

NN:

Normonatremic

ODS:

Osmotic demyelination syndrome

RER:

Rough endoplasmic reticulum

SER:

Smooth endoplasmic reticulum

TEM:

Transmission electronic microscopy

VPL:

Ventral posterior lateral

VPM:

Ventral posterior medial

References

  • Adams RD, Victor M, Mancall EL (1959) Central pontine myelinolysis: a hitherto undescribed disease occurring in alcoholic and malnourished patients. AMA Arch Neurol Psychiatry 81:154–172

    Article  CAS  PubMed  Google Scholar 

  • Adler S, Verbalis JG, Meyers S, Simplaceanu E, Williams DS (2000) Changes in cerebral blood flow and distribution associated with acute increases in plasma sodium and osmolality of chronic hyponatremic rats. Exp Neurol 163:63–71

    Article  CAS  PubMed  Google Scholar 

  • Bak LK, Walls AB, Schousboe A, Waagepetersen HS (2018) Astrocytic glycogen metabolism in the healthy and diseased brain. J Biol Chem 293:7108–7116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker EA, Tian Y, Adler S, Verbalis JG (2000) Blood-brain barrier disruption and complement activation in the brain following rapid correction of chronic hyponatremia. Exp Neurol 165:221–230

    Article  CAS  PubMed  Google Scholar 

  • Belizario J, Vieira-Cordeiro L, Enns S (2015) Necroptotic cell death signaling and execution pathway: lessons from knockout mice. Mediat Inflamm 2015:128076

    Article  CAS  Google Scholar 

  • Bouchat J, Couturier B, Marneffe C, Gankam-Kengne F, Balau B, De Swert K, Brion JP, Poncelet L, Gilloteaux J, Nicaise C (2018) Regional oligodendrocytopathy and astrocytopathy precede myelin loss and blood-brain barrier disruption in a murine model of osmotic demyelination syndrome. Glia 66:606–622

    Article  PubMed  Google Scholar 

  • Boulay AC, Saubamea B, Adam N, Chasseigneaux S, Mazare N, Gilbert A, Bahin M, Bastianelli L, Blugeon C, Perrin S et al (2017) Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface. Cell Discov 3:17005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Tong J, Yang L, Wei L, Stolz DB, Yu J, Zhang J, Zhang L (2018) PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc Natl Acad Sci U S A 115:3930–3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croker B, Rickard J, Shlomovitz I, Al-Obeidi A, D’Cruz A, Gerlic M (2018) Necroptosis. In: Radosevich JA (ed) Apoptosis and beyond: the many ways cells die. Wiley-Blackwell, Hoboken, pp 99–126

    Chapter  Google Scholar 

  • Derenzini M, Pasquinelli G, O'Donohue MF, Ploton D, Thiry M (2006) Structural and functional organization of ribosomal genes within the mammalian cell nucleolus. J Histochem Cytochem 54:131–145

    Article  CAS  PubMed  Google Scholar 

  • Gankam Kengne F, Nicaise C, Soupart A, Boom A, Schiettecatte J, Pochet R, Brion JP, Decaux G (2011) Astrocytes are an early target in osmotic demyelination syndrome. J Am Soc Nephrol 22:1834–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gankam-Kengne F, Couturier BS, Soupart A, Brion JP, Decaux G (2017) Osmotic stress-induced defective glial proteostasis contributes to brain demyelination after hyponatremia treatment. J Am Soc Nephrol 28:1802–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gocht A, Lohler J (1990) Changes in glial cell markers in recent and old demyelinated lesions in central pontine myelinolysis. Acta Neuropathol 80:46–58

    Article  CAS  PubMed  Google Scholar 

  • Gusel'nikova VV, Korzhevskiy DE (2015) NeuN as a neuronal nuclear antigen and neuron differentiation marker. Acta Nat 7:42–47

    Article  CAS  Google Scholar 

  • Illowsky BP, Laureno R (1987) Encephalopathy and myelinolysis after rapid correction of hyponatraemia. Brain 110(Pt 4):855–867

    Article  PubMed  Google Scholar 

  • Kim JE, Hyun HW, Min SJ, Kang TC (2017) Sustained HSP25 expression induces clasmatodendrosis via ER stress in the rat hippocampus. Front Cell Neurosci 11:47

    PubMed  PubMed Central  Google Scholar 

  • Kleinschmidt-DeMasters BK, Norenberg MD (1981) Rapid correction of hyponatremia causes demyelination: relation to central pontine myelinolysis. Science 211:1068–1070

    Article  CAS  PubMed  Google Scholar 

  • Laureno R (1983) Central pontine myelinolysis following rapid correction of hyponatremia. Ann Neurol 13:232–242

    Article  CAS  PubMed  Google Scholar 

  • Lutz SE, Zhao Y, Gulinello M, Lee SC, Raine CS, Brosnan CF (2009) Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J Neurosci 29:7743–7752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell DS, Kruger L (1965) The fine structure of astrocytes in the cerebral cortex and their response to focal injury produced by heavy ionizing particles. J Cell Biol 25:141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales R, Duncan D (1975) Specialized contacts of astrocytes with astrocytes and with other cell types in the spinal cord of the cat. Anat Rec 182:255–265

    Article  CAS  PubMed  Google Scholar 

  • Nomura M, Ueno A, Saga K, Fukuzawa M, Kaneda Y (2014) Accumulation of cytosolic calcium induces necroptotic cell death in human neuroblastoma. Cancer Res 74:1056–1066

    Article  CAS  PubMed  Google Scholar 

  • Odermatt B, Wellershaus K, Wallraff A, Seifert G, Degen J, Euwens C, Fuss B, Bussow H, Schilling K, Steinhauser C et al (2003) Connexin 47 (Cx47)-deficient mice with enhanced green fluorescent protein reporter gene reveal predominant oligodendrocytic expression of Cx47 and display vacuolized myelin in the CNS. J Neurosci 23:4549–4559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popescu BF, Bunyan RF, Guo Y, Parisi JE, Lennon VA, Lucchinetti CF (2013) Evidence of aquaporin involvement in human central pontine myelinolysis. Acta Neuropathol Commun 1:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Powers JM, McKeever PE (1976) Central pontine myelinolysis. An ultrastructural and elemental study. J Neurol Sci 29:65–81

    Article  CAS  PubMed  Google Scholar 

  • Rojiani AM, Cho ES, Sharer L, Prineas JW (1994) Electrolyte-induced demyelination in rats. 2. Ultrastructural evolution. Acta Neuropathol 88:293–299

    Article  CAS  PubMed  Google Scholar 

  • Sakers K, Lake AM, Khazanchi R, Ouwenga R, Vasek MJ, Dani A, Dougherty JD (2017) Astrocytes locally translate transcripts in their peripheral processes. Proc Natl Acad Sci U S A 114:E3830–E3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheer U, Thiry M, Goessens G (1993) Structure, function and assembly of the nucleolus. Trends Cell Biol 3:236–241

    Article  CAS  PubMed  Google Scholar 

  • Thiry M, Jamison JM, Gilloteaux J, Summers JL, Goessens G (1997) Ultrastructural nucleolar alterations induced by an ametantrone/polyr(A-U) complex. Exp Cell Res 236:275–284

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson BE, Pierides AM, Bradley WG (1976) Central pontine myelinolysis. Two cases with associated electrolyte disturbance. Q J Med 45:373–386

    CAS  PubMed  Google Scholar 

  • Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin CJ, Brunk UT, Declercq W, Vandenabeele P (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17:922–930

    Article  CAS  Google Scholar 

  • Verbalis JG, Drutarosky MD (1988) Adaptation to chronic hypoosmolality in rats. Kidney Int 34:351–360

    Article  CAS  PubMed  Google Scholar 

  • Wang YQ, Wang L, Zhang MY, Wang T, Bao HJ, Liu WL, Dai DK, Zhang L, Chang P, Dong WW et al (2012) Necrostatin-1 suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem Res 37:1849–58

  • Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Yuan J (2014) Necroptosis in health and diseases. Semin Cell Dev Biol 35:14–23

Download references

Acknowledgments

We are grateful to C. Charlier and C. De Bona for their technical support. This research used the Electron Microscope facility of the “Plateforme Technologique Morphologie–Imagerie” of UNamur.

Funding

J.P.B was supported by grants from the Belgian “Fonds de la Recherche Scientifique Médicale” (T.0023.15) and the Belgian Foundation “Recherche Alzheimer/ Stichting Alzheimer Onderzoek” (14001) (Fund Aline).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Nicaise.

Ethics declarations

The experimental protocol was conducted in compliance with the European Communities Council Directives for Animal Experiments (2010/63/EU, 87-848/EEC and 86/609/EEC) and was approved by the Animal Ethics Committee of University of Namur (Ethic project n°14-210).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplemental Figure 1

Selection of samples for the condition 48 h post-correction. We selected right hemisphere for electron microscopy and used left hemisphere for contralateral control in histology. 0.69 mm punches were sampled thanks to myelin staining and anti-GFAP immunolabeling. Region 1 corresponds to the lesion in the posterior thalamic nuclear group. Region 2 is the perilesional gliotic area in zona incerta and region 3 corresponds to caudate putamen. Scale bar equals 1 mm for the staining and immunolabeling of contralateral hemisphere. (PNG 7533 kb)

High resolution image (TIF 10900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchat, J., Gilloteaux, J., Suain, V. et al. Ultrastructural Analysis of Thalamus Damages in a Mouse Model of Osmotic-Induced Demyelination. Neurotox Res 36, 144–162 (2019). https://doi.org/10.1007/s12640-019-00041-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-00041-x

Keywords

Navigation