Skip to main content

Advertisement

Log in

Impaired Spatial Cognition in Adult Rats Treated with Multiple Intracerebroventricular (ICV) Infusions of the Enteric Bacterial Metabolite, Propionic Acid, and Return to Baseline After 1 Week of No Treatment: Contribution to a Rodent Model of ASD

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Propionic acid (PPA) is a dietary short chain fatty acid and an enteric bacterial metabolite. Intracerebroventricular (ICV) infusions of PPA in rodents have been shown to produce behavioral changes similar to those seen in autism spectrum disorders (ASD), including perseveration. The effects of ICV infusions of PPA on spatial cognition were examined by giving rats infusions of either PPA (0.26 M, pH 7.4, 4 μl/infusion) or phosphate-buffered saline (PBS, 0.1 M) twice a day for 7 days. The rats were then tested in the Morris water maze (MWM) for acquisition of spatial learning. After a recovery period of 1 week of no treatment, the rats were then tested for reversal of spatial learning in the MWM. PPA-treated rats showed impaired spatial learning in the maze, relative to controls, as demonstrated by increased search latencies, fewer direct and circle swims, and more time spent in the periphery of the maze than PBS controls. After a recovery period of 1 week of no treatment, these animals exhibited normal spatial reversal learning indicating that the behavioral cognitive deficits caused by PPA seem to be reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Lahham SH, Peppelenbosch MP, Roelofsen H, Vonk RJ, Venema K (2010) Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta 1801:1175–1183

    Article  CAS  PubMed  Google Scholar 

  • Al-Owain M, Kaya N, Al-Shamrani H, Al-Bakheet A, Qari A, Al-Muaigl S, Ghaziuddin M (2012) Autism spectrum disorder in a child with propionic acidemia. J Inherit Metabol Dis 7:63–66

    Google Scholar 

  • Arndt TL, Stodgell CJ, Rodier PM (2005) The teratology of autism. Int J Dev Neurosci 23:189–199

    Article  CAS  PubMed  Google Scholar 

  • Ashwood P, Van de Water J (2004) Is autism an autoimmune disease? Autoimmun Rev 3:557–562

    Article  CAS  PubMed  Google Scholar 

  • Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, Rutter M (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25:63–77

    Article  CAS  Google Scholar 

  • Benach JL, Li E, McGovern MM (2012) A microbial association with autism. MBio 3(1):e00019-12

  • Besag FM (2004) The department of health action plan “improving services for people with epilepsy”: a significant advance or only a first step? Seizure 13(8):553–564

    Article  PubMed  Google Scholar 

  • Brestoff JR, Artis D (2013) Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14(7):676–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brusque AM, Mello CF, Buchanan ST, Terracciano ST, Rocha MP, Vargas CR, Wannmacher CM, Wajner M (1999) Effect of chemically induced propionic acidemia on neurobehavioral development of rats. Pharmacol Biochem Behav 64:529–534

    Article  CAS  PubMed  Google Scholar 

  • Cain DP, Hargreaves EL, Boon F, Dennison Z (1993) And examination of the relations between hippocampal long-term potentiation, kindling, afterdischarge, and place learning in the water maze. Hippocampus 3(2):153–163

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Rizza V (1999) Formation of propionate after short-term ethanol treatment and its interaction with the carnitine pool in rat. Alcohol 19:169–176

    Article  CAS  PubMed  Google Scholar 

  • Carlezon WA, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28(8):436–445

    Article  CAS  Google Scholar 

  • Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13:171–181

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Lee S, Won J, Jin Y, Hong Y, Hur T-Y, Kim J-H, Lee S-R, Hong Y (2018) Pathophysiological and neurobehavioral characteristics of a propionic acid-mediated autism-like rat model. PLoS One 13(2):e0192925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulter DL (1991) Carnitine, valproate, and toxicity. J Child Neurol 6:7–14

    Article  CAS  PubMed  Google Scholar 

  • Curtis JT, Hood AN, Chen Y, Cobb GR, Wallace DR (2010) Chronic metals ingestion by prairie voles produces sex-specific deficits in social behavior: an animal model of autism. Behav Brain Res 213:42–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson G, Zanolli K (2003) Early intervention and brain plasticity in autism. Novartis Found Symp 251:266–274 discussion 274-80, 281-97

    PubMed  Google Scholar 

  • Dawson M, Soulieres I, Gernsbacher MA, Mottron L (2007) The level and nature of autistic intelligence. Psychol Sci 18:657–662

    Article  PubMed  PubMed Central  Google Scholar 

  • De Angelis MI, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, Cristofori F, Guerzoni ME, Gobbetti M, Francavilla R (2013) Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS-One 8(10):e76993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Batie CD, Barbier V, Roda C, Brassier A, Arnoux J-B, Valayannopoulos V, Guemann A-S, Pontoizeau C, Goven S, Havarou F, Lacaille F, Bonnefont J-P, Canoui P, Ottolenghi C, De Lonlay P, Ouss L (2018) Autism spectrum disorders in propionic acidemia patients. J Inherit Metab Dis 41:623–629

    Article  CAS  PubMed  Google Scholar 

  • DeCastro M, Nankova BB, Shah P, Patel P, Mally PV, Mishra R, La Gamma EF (2005) Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Brain Res Mol Brain Res 142:28–38

    Article  CAS  PubMed  Google Scholar 

  • DiCicco-Bloom E, Lord C, Zwaigenbaum L, Courchesne E, Dager SR, Schmitz C, Schultz RT, Crawley J, Young LJ (2006) The developmental neurobiology of autism spectrum disorder. J Neurosci 62:6897–6906

    Article  CAS  Google Scholar 

  • Dietert RR, Dietert JM, Dewitt JC (2011) Environmental risk factors for autism. Emerg Health Threats J 4:7111. https://doi.org/10.3402/ehtj.v4i0.7111

  • El-Ansary A, Shaker GH, Rizk MZ (2013) Role of gut-brain axis in the aetiology of neurodevelopmental disorders with reference to autism. J Clin Toxicol S6:005. https://doi.org/10.4172/2161-0495.S6-005

    Article  Google Scholar 

  • Fallon J (2005) Could one of the most widely prescribed antibiotics amoxicillin/clavulanate “augmentin” be a risk factor for autism? Med Hypotheses 64:312–315

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Cuadra AE, El Fakahany EE, Sidwell RW, Thuras P (2000) Prenatal viral infection causes alterations in nNOS expression in developing mouse brains. Neuroreport 11:1493–1496

    Article  CAS  PubMed  Google Scholar 

  • Feliz B, Witt DR, Harris BT (2003) Propionic acidemia: a neuropathology case report and review of prior cases. Arch Pathol Lab Med 127:e325–e328

    PubMed  Google Scholar 

  • Finegold SM, Song Y, Liu C (2002) Taxonomy-general comments and update on taxonomy of Clostridia and Anaerobic cocci. Anaerobe 8:283–285

    Article  PubMed  Google Scholar 

  • Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, Youn E, Summanen PH, Granpeesheh D, Dixon D, Liu M, Molitoris DR, Green JA 3rd. (2010) Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16:444–453

    Article  CAS  PubMed  Google Scholar 

  • Foley KA, MacFabe DF, Vaz A, Ossenkopp K-P, Kavaliers M (2014a) Sexually dimorphic effects of prenatal exposure to propionic acid and lipopolysaccharide on social behavior in neonatal, adolescent, and adult rats: implications for autism spectrum disorders. Int J Dev Neurosci 39:68–78. https://doi.org/10.1016/j.ijdevneu.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  • Foley KA, Ossenkopp K-P, Kavaliers M, MacFabe DF (2014b) Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner. PLoS One 9:e87072. https://doi.org/10.1371/journal.pone.0087072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foley KA, MacFabe DF, Kavaliers M, Ossenkopp K-P (2015) Sexually dimorphic effects of prenatal exposure to lipopolysaccharide, and prenatal and postnatal exposure to propionic acid, on acoustic startle response and prepulse inhibition in adolescent rats: relevance to autism spectrum disorders. Behav Brain Res 278:244–256. https://doi.org/10.1016/j.bbr.2014.09.032

    Article  CAS  PubMed  Google Scholar 

  • Frye RE, Rose S, Slattery J, MacFabe DF (2015) Gastrointestinal dysfunction in autism spectrum disorder: the role of the mitochondria and the enteric microbiome. Microb Ecol Health Dis 26:27458

    Google Scholar 

  • Hara H, Haga S, Aoyama Y, Kiriyama S (1999) Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J Nutr 129:942–948

    Article  CAS  PubMed  Google Scholar 

  • Helt M, Kelley E, Kinsbourne M, Pandey J, Boorstein H, Herbert M, Fein D (2008) Can children with autism recover? If so, how? Neuropsychol Rev 18:339–366

    Article  Google Scholar 

  • Herbert MR, Russo JP, Yang S, Roohi J, Blaxill M, Kahler SG, Cremer L, Hatchwell E (2006) Autism and environmental genomics. Neurotoxicology 27:671–684

    Article  CAS  PubMed  Google Scholar 

  • Horvath K, Perman JA (2002) Autism and gastrointestinal symptoms. Curr Gastroenterol Rep 4(3):251–258

    Article  PubMed  Google Scholar 

  • Horvath K, Papadimitriou JC, Rabsztyn A, Drachenberg C, Tildon JT (1999) Gastrointestinal abnormalities in children with autistic disorder. J Pediatr 135:559–563

    Article  CAS  PubMed  Google Scholar 

  • Hu VW, Frank BC, Heine S, Lee NH, Quackenbush J (2006) Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics 7:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram JL, Peckham SM, Tisdale B, Rodier PM (2000) Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol Teratol 22:319–324

    Article  CAS  PubMed  Google Scholar 

  • Jyonouchi H, Sun S, Itokazu N (2002) Innate immunity associated with inflammatory responses and cytokine production against common dietary proteins in patients with autism spectrum disorder. Neuropsychobiology 46:76–84

    Article  CAS  PubMed  Google Scholar 

  • Kamen CL, Zevy DL, Bishnoi IR, Ward JM, Kavaliers M, Ossenkopp K-P (2019) Systemic treatment with the enteric bacterial fermentation product, propionic acid, reduces acoustic startle response magnitude in rats in a dose dependent fashion: contribution to a rodent model of ASD. Neurotox Res 35:353–359. https://doi.org/10.1007/s12640-018-9960-9

  • Kang D-W, EsraIlhana Z, Isern NG, Hoyt DW, Howsmond DP, Shaffer M, Lozupon CA, Hahn J, Adams JB, Krajmalnik-Brown R (2018) Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 49:121–131

    Article  CAS  PubMed  Google Scholar 

  • Kielinen M, Linna SL, Moilanen I (2000) Autism in northern Finland. Eur Child Adolesc Psychiatry 9:162–167

    Article  CAS  PubMed  Google Scholar 

  • Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6):1332–1345

    Article  CAS  Google Scholar 

  • Le Poul E, Loison C, Struyf SE, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M (2003) Functionaly characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489

    Article  CAS  PubMed  Google Scholar 

  • MacFabe DF (2012) Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis 23:19260. https://doi.org/10.3402/mehd.v23i0.19260

    Article  CAS  Google Scholar 

  • MacFabe DF (2015) Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders. Microb Ecol Health Dis 26:28177

    PubMed  Google Scholar 

  • MacFabe DF, Cain DP, Rodriguez-Capote K, Franklin A, Hoffman J, Boon F, Taylor AR, Kavaliers M, Ossenkopp K-P (2007) Neurobiological effects of intraventicular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res 176:149–169

    Article  CAS  Google Scholar 

  • MacFabe DF, Rodriguez-Capote K, Hoffman J, Franklin A, Mohammad-Asef Y, Taylor R, Boon F, Cain DP, Kavaliers M, Possmayer F, Ossenkopp K-P (2008) A novel rodent model of autism: intraventricular infusions of propionic acid increase locomotor activity and induce neuroinflammation and oxidative stress in discrete regions of adult rat brain. Am J Biochem Biotechnol 4(2):146–166

    Article  CAS  Google Scholar 

  • MacFabe DF, Cain NE, Boon F, Ossenkopp K-P, Cain DP (2011) Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder. Behav Brain Res 217:47–54

    Article  CAS  PubMed  Google Scholar 

  • Maurer MH, Canis M, Kuschinsky W, Duelli R (2004) Correlation between local monocarboxylate transporter 1 (MCT1) and glucose transporter 1 (GLUT1) densities in the adult rat brain. Neurosci Lett 355:105–108

    Article  CAS  PubMed  Google Scholar 

  • Nakao S, Moriya Y, Furuyama S, Niederman R, Sugiy H (1998) Propionic acid stimulates superoxide generation in human neutrophils. Cell Biol Int 22:331–337

    Article  CAS  PubMed  Google Scholar 

  • Narita N, Kato M, Tazoe M, Miyazaki K, Narita M, Okado N (2002) Increased monoamine concentration in the brain and blood of fetal thalidomide- and valproic acid-exposed rat: putative animal models for autism. Pediatr Res 52:576–579

    CAS  PubMed  Google Scholar 

  • Niederman R, Zhang J, Kashket S (1997) Short-chain carboxylic-acid-stimulated, PMN-mediated gingival inflammation. Crit Rev Oral Biol Med 8:269–290

    Article  CAS  PubMed  Google Scholar 

  • Ossenkopp K-P, Kavaliers M (1996) Measuring spontaneous locomotor activity in small mammals. In: Ossenkopp K-P, Kavaliers M, Sanberg PR (eds) Measuring movement and locomotion: from invertebrates to humans. Springer Verlag, Heidelberg, pp 33–59

    Google Scholar 

  • Ossenkopp K-P, Foley KA, Gibson J, Fudge MA, Kavaliers M, Cain DP, MacFabe DF (2012) Systemic treatment with the enteric bacterial fermentation product, propionic acid, produces both conditioned taste avoidance and conditioned place avoidance in rats. Behav Brain Res 227:134–141. https://doi.org/10.1016/j.bbr.2011.10.045

    Article  CAS  PubMed  Google Scholar 

  • Patterson PH (2009) Immune involvement in schizophrenia and autism: etiology, pathology and animal models. Behav Brain Res 204(2):313–321

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Rorig B, Klausa G, Sutor B (1996) Intracellular acidification reduced gap junction coupling between immature rat neocortical pyramidal neurons. J Physiol 490(pt-1):31–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasson NJ, Turner-Brown LM, Holtzclaw TN, Lam KS, Bodfish JW (2008) Children with autism demonstrate circumscribed attention during passive viewing of complex social and nonsocial picture arrays. Autism Res 1:31–42

    Article  PubMed  Google Scholar 

  • Shams S, Foley KA, Kavaliers M, MacFabe DF, Ossenkopp K-P (2018) Systemic treatment with the enteric bacterial metabolic product propionic acid results in reduction of social behavior in juvenile rats: contribution to a rodent model of autism spectrum disorder. Dev Psychobiol 00:1–12. https://doi.org/10.1002/dev.21825

    Article  CAS  Google Scholar 

  • Shultz SR, MacFabe DF, Ossenkopp K-P, Scratch S, Whelan J, Taylor R, Cain DP (2008) Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behaviour in the rat: implications for an animal model of autism. Neuropharmacology 54:901–911

    Article  CAS  PubMed  Google Scholar 

  • Shultz SR, MacFabe DK, Martin S, Jackson J, Taylor R, Boon F, Ossenkopp K-P, Cain DP (2009) Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long-Evans rat: further development of a rodent model of autism. Behav Brain Res 200:33–41

    Article  PubMed  Google Scholar 

  • Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Ann Rev Neurosci 21:127–148

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Nagao K, Tokunaga J, Katayama N, Uyeda M (1996) Inhibition of DNA methyltransferase by microbial inhibitors and fatty acids. J Enzym Inhib 10:271–280

    Article  CAS  PubMed  Google Scholar 

  • Thomas RH, Foley KA, Mepham JR, Tichenoff LJ, Possmayer F, MacFabe DF (2010) Altered brain phospholipid and acylcarnitine profiles in propionic acid infused rodents: further development of a potential model of autism spectrum disorders. J Neurochem 113(2):515–529

    Article  CAS  PubMed  Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81

    Article  CAS  Google Scholar 

  • Wagner AK, Bayir H, Ren D, Puccio A, Zafonte RD, Kochanek PM (2004) Relationships between cerebrospinal fluid markers of excitotoxicity, ischemia, and oxidative damage after severe TBI: the impact of gender, age, and hypothermia. J Neurotrauma 21:125–136

    Article  Google Scholar 

  • Wah DTO, Kavaliers M, Bishnoi IR, Ossenkopp K-P (2019) Lipopolysaccharide (LPS) induced sickness in early adolescence alters the behavioral effects of the short-chain fatty acid, propionic acid, in late adolescence and adulthood: examining anxiety and startle reactivity. Behav Brain Res 360:312–322. https://doi.org/10.1016/j.bbr.2018.12.003

  • Wajner M, Santos KD, Schlottfeldt JL, Rocha MP, Wannmacher CM (1999) Inhibition of mitogen-activated proliferation of human peripheral lymphocytes in vitro by propionic acid. Clin Sci 96:99–10

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA (2012) Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci 57:2096–2102

    Article  CAS  PubMed  Google Scholar 

  • Witters P, Debbold E, Crivelly K, Kerckhove KV, Corthouts K, Debbold B, Andersson H, Vannieuwenborg L, Geuens S, Baumgartner M, Kozicz T, Settles L, Morava E (2016) Autism in patients with propionic acidemia. Mol Genet Metab 119(4):317–321

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would also like to express our utmost thanks to David Patchell-Evans, for his tireless devotion to persons with autism, and his daughter, Kilee Patchell-Evans.

Funding

This research was supported by contributions from the GoodLife Children’s Charities and Autism Research Institute to Derrick MacFabe. It was also supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grants, and Research Tools and Instruments Grants, awarded to Klaus-Peter Ossenkopp and Donald P. Cain. Jennifer Mepham was supported by an Ontario Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Peter Ossenkopp.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mepham, J.R., Boon, F.H., Foley, K.A. et al. Impaired Spatial Cognition in Adult Rats Treated with Multiple Intracerebroventricular (ICV) Infusions of the Enteric Bacterial Metabolite, Propionic Acid, and Return to Baseline After 1 Week of No Treatment: Contribution to a Rodent Model of ASD. Neurotox Res 35, 823–837 (2019). https://doi.org/10.1007/s12640-019-0002-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-0002-z

Keywords

Navigation