Skip to main content
Log in

Effects of Preweaning Manganese in Combination with Adult Striatal Dopamine Lesions on Monoamines, BDNF, TrkB, and Cognitive Function in Sprague–Dawley Rats

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Manganese (Mn) is an essential nutrient especially during development, but Mn overexposure (MnOE) produces long-term cognitive deficits. Evidence of long-term changes in dopamine in the neostriatum was found in rats from developmental MnOE previously. To examine the relationship between MnOE and dopamine, we tested whether the effects of developmental MnOE would be exaggerated by dopamine reductions induced by 6-hydroxydopamine (6-OHDA) neostriatal infusion when the rats were adults. The experiment consisted of four groups of females and males: Vehicle/Sham, MnOE/Sham, Vehicle/6-OHDA, and MnOE/6-OHDA. Both MnOE/Sham and Vehicle/6-OHDA groups displayed egocentric and allocentric memory deficits, whereas MnOE+6-OHDA had additive effects on spatial memory in the Morris water maze and egocentric learning in the Cincinnati water maze. 6-OHDA reduced dopamine in the neostriatum and nucleus accumbens, reduced norepinephrine in the hippocampus, reduced TH+ cells and TrkB and TH expression in the substantia nigra pars compacta (SNpc), but increased TrkB in the neostriatum. MnOE alone had no effect on monoamines or TrkB in the neostriatum or hippocampus but reduced BDNF in the hippocampus. A number of sex differences were noted; however, only a few significant interactions were found for MnOE and/or 6-OHDA exposure. These data further implicate dopamine and BDNF in the cognitive deficits arising from developmental MnOE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguiar LMV, Macêdo DS, Vasconcelos SMM, Oliveira AA, de Sousa FCF, Viana GSB (2008) CSC, an adenosine A2A receptor antagonist and MAO B inhibitor, reverses behavior, monoamine neurotransmission, and amino acid alterations in the 6-OHDA-lesioned rats. Brain Res 1191:192–199

    Article  CAS  PubMed  Google Scholar 

  • Amos-Kroohs RM, Bloor CP, Qureshi MA, Vorhees CV, Williams MT (2015) Effects of developmental exposure to manganese and/or low iron diet: changes to metal transporters, sucrose preference, elevated zero-maze, open-field, and locomotion in response to fenfluramine, amphetamine, and MK-801. Toxicol Rep 2:1046–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amos-Kroohs RM, Davenport LL, Gutierrez A, Hufgard JR, Vorhees CV, Williams MT (2016) Developmental manganese exposure in combination with developmental stress and iron deficiency: effects on behavior and monoamines. Neurotoxicol Teratol 56:55–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amos-Kroohs RM, Davenport LL, Atanasova N, Abdulla ZI, Skelton MR, Vorhees CV, Williams MT (2017) Developmental manganese neurotoxicity in rats: cognitive deficits in allocentric and egocentric learning and memory. Neurotoxicol Teratol 59:16–26

    Article  CAS  PubMed  Google Scholar 

  • Benedetto A, Au C, Aschner M (2009) Manganese-induced dopaminergic neurodegeneration: insights into mechanisms and genetics shared with Parkinson’s disease. Chem Rev 109:4862–4884

    Article  CAS  PubMed  Google Scholar 

  • Bonito-Oliva A, Pignatelli M, Spigolon G, Yoshitake T, Seiler S, Longo F, Piccinin S, Kehr J, Mercuri NB, Nisticò R, Fisone G (2014) Cognitive impairment and dentate gyrus synaptic dysfunction in experimental parkinsonism. Biol Psychiatry 75:701–710

    Article  CAS  PubMed  Google Scholar 

  • Bouchatta O, Manouze H, Bouali-benazzouz R, Kerekes N, Ba-M’hamed S, Fossat P, Landry M, Bennis M (2018) Neonatal 6-OHDA lesion model in mouse induces attention-deficit/hyperactivity disorder (ADHD)-like behaviour. Sci Rep 8:15349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun AA, Graham DL, Schaefer TL, Vorhees CV, Williams MT (2012) Dorsal striatal dopamine depletion impairs both allocentric and egocentric navigation in rats. Neurobiol Learn Mem 97:402–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun AA, Amos-Kroohs RM, Gutierrez A, Lundgren KH, Seroogy KB, Skelton MR, Vorhees CV, Williams MT (2015) Dopamine depletion in either the dorsomedial or dorsolateral striatum impairs egocentric Cincinnati water maze performance while sparing allocentric Morris water maze learning. Neurobiol Learn Mem 118:55–63

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Jing FC, Li CL, Tu PF, Zheng QS, Wang ZH (2007) Echinacoside prevents the striatal extracellular levels of monoamine neurotransmitters from diminution in 6-hydroxydopamine lesion rats. J Ethnopharmacol 114:285–289

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Chakraborty S, Mukhopadhyay S, Lee E, Paoliello MMB, Bowman AB, Aschner M (2015) Manganese homeostasis in the nervous system. J Neurochem 134:601–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105:7–17

    Article  CAS  PubMed  Google Scholar 

  • Cordova FM, Aguiar AS, Peres TV, Lopes MW, Goncalves FM, Remor AP, Lopes SC, Pilati C, Latini AS, Prediger RDS, Erikson KM, Aschner M, Leal RB (2012) In vivo manganese exposure modulates Erk, Akt and Darpp-32 in the striatum of developing rats, and impairs their motor function. PLoS One 7:1–14

    Google Scholar 

  • Cordova FM, Aguiar ASJ, Peres TV, Lopes MW, Gonçalves FM, Pedro DZ, Lopes SC, Pilati C, Prediger RDS, Farina M, Erikson KM, Aschner M, Leal RB (2013) Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox. Arch Toxicol 87:1231–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couper J (1837) On the effects of black oxide of manganese when inhaled into the lungs. Br Ann Med Pharmacol 1:41–42

    Google Scholar 

  • Cravens RW (1974) Effects of maternal undernutrition on offspring behavior: incentive value of a food reward and ability to escape from water. Dev Psychobiol 7:61–69

    Article  CAS  PubMed  Google Scholar 

  • de Water E, Proal E, Wang V, Medina SM, Schnaas L, Téllez-Rojo MM, Wright RO, Tang CY, Horton MK (2018) Prenatal manganese exposure and intrinsic functional connectivity of emotional brain areas in children. Neurotoxicology 64:85–93

    Article  CAS  PubMed  Google Scholar 

  • Dorner K, Dziadzka S, Hohn A, Sievers E, Oldigs HD, Schulz-Lell G, Schaub J (1989) Longitudinal manganese and copper balances in young infants and preterm infants fed on breast-milk and adapted cow’s milk formulas. Br J Nutr 61:559–572

    Article  CAS  PubMed  Google Scholar 

  • Egyed M, Wood GC (1996) Risk assessment for combustion products of the gasoline additive MMT in Canada. Sci Total Environ 189–190:11–20

    Article  Google Scholar 

  • Erikson KM, Aschner M (2003) Manganese neurotoxicity and glutamate-GABA interaction. Neurochem Int 43:475–480

    Article  CAS  PubMed  Google Scholar 

  • Erikson KM, Dorman DC, Lash LH, Dobson AW, Aschner M (2004) Airborne manganese exposure differentially affects end points of oxidative stress in an age- and sex-dependent manner. Biol Trace Elem Res 100:49–62

    Article  CAS  PubMed  Google Scholar 

  • Erikson KM, Dorman DC, Fitsanakis V, Lash LH, Aschner M (2006) Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese. Biol Trace Elem Res 111:199–215

    Article  CAS  PubMed  Google Scholar 

  • Erikson KM, Thompson K, Aschner J, Aschner M (2007) Manganese neurotoxicity: a focus on the neonate. Pharmacol Ther 113:369–377

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein MM, Jerrett M (2007) A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environ Res 104:420–432

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Chen W, Yu H, Wei Z, Yu X (2016) The effects of preweaning manganese exposure on spatial learning ability and p-CaMKIIa level in the hippocampus. Neurotoxicology 52:98–103

    Article  CAS  PubMed  Google Scholar 

  • Golub MS, Hogrefe CE, Germann SL, Tran TT, Beard JL, Crinella FM, Lonnerdal B (2005) Neurobehavioral evaluation of rhesus monkey infants fed cow’s milk formula, soy formula, or soy formula with added manganese. Neurotoxicol Teratol 27:615–627

    Article  CAS  PubMed  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, Richardson RJ (1997) Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology 48:650–658

    Article  CAS  PubMed  Google Scholar 

  • Guilarte TR (2010) Manganese and Parkinson’s disease: a critical review and new findings. Environ Health Perspect 118:1071–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafeman D, Factor-Litvak P, Cheng Z, van Geen A, Ahsan H (2007) Association between manganese exposure through drinking water and infant mortality in Bangladesh. Environ Health Perspect 115:1107–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haynes EN, Sucharew H, Hilbert TJ, Kuhnell P, Spencer A, Newman NC, Burns R, Wright R, Parsons PJ, Dietrich KN (2018) Impact of air manganese on child neurodevelopment in East Liverpool, Ohio. Neurotoxicology 64:94–102

    Article  CAS  PubMed  Google Scholar 

  • He P, Liu DH, Zhang GQ (1994) Effects of high-level manganese sewage irrigation on children’s neurobehavior. Zhonghua Yu Fang Yi Xue Za Zhi 28:216–218

    CAS  PubMed  Google Scholar 

  • He Q, Du T, Yu X, Xie A, Song N, Kang Q, Yu J, Tan L, Xie J, Jiang H (2011) DMT1 polymorphism and risk of Parkinson’s disease. Neurosci Lett 501:128–131

    Article  CAS  PubMed  Google Scholar 

  • Hemmerle AM, Dickerson JW, Herring NR, Schaefer TL, Vorhees CV, Williams MT, Seroogy KB (2012) (+/−)3,4-Methylenedioxymethamphetamine (“ecstasy”) treatment modulates expression of neurotrophins and their receptors in multiple regions of the adult rat brain. J Comp Neurol 520:2459–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmerle AM, Dickerson JW, Herman JP, Seroogy KB (2014) Stress exacerbates experimental Parkinson’s disease. Mol Psychiatry 19:638–640

    Article  CAS  PubMed  Google Scholar 

  • Hemmerle AM, Ahlbrand R, Bronson SL, Lundgren KH, Richtand NM, Seroogy KB (2015) Modulation of schizophrenia-related genes in the forebrain of adolescent and adult rats exposed to maternal immune activation. Schizophr Res 168:411–420

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirata Y, Furuta K, Suzuki M, Oh-Hashi K, Ueno Y, Kiuchi K (2012) Neuroprotective cyclopentenone prostaglandins up-regulate neurotrophic factors in C6 glioma cells. Brain Res 1482:91–100

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Ferchmin PA, Hemmerle AM, Seroogy KB, Eterovic VA, Hao J (2017) 4R-Cembranoid improves outcomes after 6-hydroxydopamine challenge in both in vitro and in vivo models of Parkinson’s disease. Front Neurosci 11:272

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Kim JM, Kim JW, Yoo CI, Lee CR, Lee JH, Kim HK, Yang SO, Chung HK, Lee DS, Jeon BS (2002) Dopamine transporter density is decreased in parkinsonian patients with a history of manganese exposure: what does it mean? Mov Disord 17:568–575

    Article  CAS  PubMed  Google Scholar 

  • Kornblith ES, Casey SL, Lobdell DT, Colledge MA, Bowler RM (2018) Environmental exposure to manganese in air: tremor, motor and cognitive symptom profiles. Neurotoxicology 64:152–158

    Article  CAS  PubMed  Google Scholar 

  • Kwon OB, Lee JH, Kim HJ, Lee S, Lee S, Jeong MJ, Kim SJ, Jo HJ, Ko B, Chang S, Park SK, Choi YB, Bailey CH, Kandel ER, Kim JH (2015) Dopamine regulation of amygdala inhibitory circuits for expression of learned fear. Neuron 88:378–389

    Article  CAS  PubMed  Google Scholar 

  • Lazrishvili I, Bikashvili T, Shukakidze A, Samchkuashvili K, Shavlakadze O (2011) Effect of short-term manganese chloride intoxicatuion on anxiety and fear of young rats. Georgian Med News 11:102–106

    CAS  PubMed  Google Scholar 

  • Lucchini RG, Albini E, Benedetti L, Borghesi S, Coccaglio R, Malara EC, Parrinello G, Garattini S, Resola S, Alessio L (2007) High prevalence of parkinsonian disorders associated to manganese exposure in the vicinities of ferroalloy industries. Am J Ind Med 50:788–800

    Article  CAS  PubMed  Google Scholar 

  • Mena I, Horiuchi K, Burke K, Cotzias GC (1969) Chronic manganese poisoning: individual susceptibility and absorption of iron. Neurology 19:1000–1006

    Article  CAS  PubMed  Google Scholar 

  • Menezes-Filho JA, Bouchard M, Sarcinelli PD, Moreira JC (2009) Manganese exposure and the neuropsychological effect on children and adolescents: a review. Rev Panam Salud Publica 26:541–548

    Article  PubMed  Google Scholar 

  • Molina RM, Phattanarudee S, Kim J, Thompson K, Wessling-Resnick M, Maher TJ, Brain JD (2011) Ingestion of Mn and Pb by rats during and after pregnancy alters iron metabolism and behavior in offspring. Neurotoxicology 32:413–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno JA, Streifel KM, Sullivan KA, Legare ME, Tjalkens RB (2009) Developmental exposure to manganese increases adult susceptibility to inflammatory activation of glia and neuronal protein nitration. Toxicol Sci 112:405–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  CAS  PubMed  Google Scholar 

  • Numan S, Seroogy KB (1999) Expression of trkB and trkC mRNAs by adult midbrain dopamine neurons: a double-label in situ hybridization study. J Comp Neurol 403:295–308

    Article  CAS  PubMed  Google Scholar 

  • Numan S, Gall CM, Seroogy KB (2005) Developmental expression of neurotrophins and their receptors in postnatal rat ventral midbrain. J Mol Neurosci 27:245–260

    Article  CAS  PubMed  Google Scholar 

  • Paquette C, Franzén E, Jones GM, Horak FB (2011) Walking in circles: navigation deficits from Parkinson’s disease but not from cerebellar ataxia. Neuroscience 190:177–183

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinates, 6th edn. Elsevier, London

    Google Scholar 

  • Peres TV, Schettinger MRC, Chen P, Carvalho F, Avila DS, Bowman AB, Aschner M (2016) Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharmacol Toxicol 17:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perl D, Olanow C (2007) The neuropathology of manganese-induced parkinsonism. J Neuropathol Exp Neurol 66:675–682

    Article  CAS  PubMed  Google Scholar 

  • Petzold A, Psotta L, Brigadski T, Endres T, Lessmann V (2015) Chronic BDNF deficiency leads to an age-dependent impairment in spatial learning. Neurobiol Learn Mem 120:52–60

    Article  CAS  PubMed  Google Scholar 

  • Rabelo PCR, Almeida TF, Guimarães JB, Barcellos LAM, Cordeiro LMS, Moraes MM, Coimbra CC, Szawka RE, Soares DD (2015) Intrinsic exercise capacity is related to differential monoaminergic activity in the rat forebrain. Brain Res Bull 112:7–13

    Article  CAS  PubMed  Google Scholar 

  • Ressler T, Wong J, Roos J (1999) Manganese speciation in exhaust particulates of automobiles using MMT-containing gasoline. J Synchrotron Radiat 6:656–658

    Article  CAS  PubMed  Google Scholar 

  • Rodier J (1955) Manganese poisoning in Moroccan miners. Br J Ind Med 12:21–35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Pallares J, Parga JA, Munoz A, Rey P, Guerra MJ, Labandeira-Garcia JL (2007) Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem 103:145–156

    CAS  PubMed  Google Scholar 

  • Roels H, Meiers G, Delos M, Ortega I, Lauwerys R, Buchet JP, Lison D (1997) Influence of the route of administration and the chemical form (MnCl2, MnO2) on the absorption and cerebral distribution of manganese in rats. Arch Toxicol 71:223–230

    Article  CAS  PubMed  Google Scholar 

  • Santamaria AB (2008) Manganese exposure, essentiality & toxicity. Indian J Med Res 128:484–500

    CAS  PubMed  Google Scholar 

  • Sasi M, Vignoli B, Canossa M, Blum R (2017) Neurobiology of local and intercellular BDNF signaling. Pflugers Arch - Eur J Physiol 3:1–18

    Google Scholar 

  • Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224

    Article  PubMed  Google Scholar 

  • Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106–107:1–16

    Article  PubMed  Google Scholar 

  • Seroogy KB, Herman JP (1997) In situ hybridization approaches to the study of the nervous system. In: Turner AJ, Bachelard HS (eds) Neurochemistry: a practical approach. Oxford University Press, Oxford, pp 121–150

    Google Scholar 

  • Seroogy KB, Lundgren KH, Tran TMD, Guthrie KM, Isackson PJ, Gall CM (1994) Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J Comp Neurol 342:321–334

    Article  CAS  PubMed  Google Scholar 

  • Smith EA, Newland P, Bestwick KG, Ahmed N (2013) Increased whole blood manganese concentrations observed in children with iron deficiency anaemia. J Trace Elem Med Biol 27:65–69

    Article  CAS  PubMed  Google Scholar 

  • Surmeier DJ, Sulzer D (2013) The pathology roadmap in Parkinson disease. Prion 7:85–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takser L, Mergler D, Hellier G, Sahuquillo J, Huel G (2003) Manganese, monoamine metabolite levels at birth, and child psychomotor development. Neurotoxicology 24:667–674

    Article  CAS  PubMed  Google Scholar 

  • Tran TT, Chowanadisai W, Crinella FM, Chicz-DeMet A, Lönnerdal B (2002) Effect of high dietary manganese intake of neonatal rats on tissue mineral accumulation, striatal dopamine levels, and neurodevelopmental status. Neurotoxicology 23:635–643

    Article  CAS  PubMed  Google Scholar 

  • Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    Article  PubMed  PubMed Central  Google Scholar 

  • Vorhees CV, Williams MT (2016) Cincinnati water maze: a review of the development, methods, and evidence as a test of egocentric learning and memory. Neurotoxicol Teratol 57:1–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorhees CV, Herring NR, Schaefer TL, Grace CE, Skelton MR, Johnson HL, Williams MT (2008) Effects of neonatal (+)-methamphetamine on path integration and spatial learning in rats: effects of dose and rearing conditions. Int J Dev Neurosci 26:599–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vorhees CV, He E, Skelton MR, Graham DL, Schaefer TL, Grace CE, Braun AA, Amos-Kroohs R, Williams MT (2011) Comparison of (+)-methamphetamine, ±-methylenedioxymethamphetamine, (+)-amphetamine and ±-fenfluramine in rats on egocentric learning in the Cincinnati water maze. Synapse 65:368–378

    Article  CAS  PubMed  Google Scholar 

  • Vorhees CV, Graham DL, Amos-Kroohs RM, Braun AA, Grace CE, Schaefer TL, Skelton MR, Erikson KM, Aschner M, Williams MT (2014) Effects of developmental manganese, stress, and the combination of both on monoamines, growth, and corticosterone. Toxicol Rep 1:1046–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen X, Zhang N, Ma Q (2013) Effects of exercise on stress-induced changes of norepinephrine and serotonin in rat hippocampus. Chin J Phys 56:245–252

    Article  CAS  Google Scholar 

  • West MJ (1993) Design-based stereological methods for counting neurons. Neurobiol Aging 14:275–285

    Article  CAS  PubMed  Google Scholar 

  • Williams MT, Morford LRL, Wood SL, Rock SL, McCrea AE, Fukumura M, Wallace TL, Broening HW, Moran MS, Vorhees CV (2003) Developmental 3,4-methylenedioxymethamphetamine (MDMA) impairs sequential and spatial but not cued learning independent of growth, litter effects or injection stress. Brain Res 968:89–101

    Article  CAS  PubMed  Google Scholar 

  • Williams MT, Herring NR, Schaefer TL, Skelton MR, Campbell NG, Lipton JW, McCrea AE, Vorhees CV (2007) Alterations in body temperature, corticosterone, and behavior following the administration of 5-methoxy-diisopropyltryptamine (‘foxy’) to adult rats: a new drug of abuse. Neuropsychopharmacology 32:1404–1420

    Article  CAS  PubMed  Google Scholar 

  • Witholt R, Gwiazda RH, Smith DR (2000) The neurobehavioral effects of subchronic manganese exposure in the presence and absence of pre-parkinsonism. Neurotoxicol Teratol 22:851–861

    Article  CAS  PubMed  Google Scholar 

  • Yamada M, Ohno S, Okayasu I, Okeda R, Hatakeyama S, Watanabe H, Ushio K, Tsukagoshi H (1986) Chronic manganese poisoning: a neuropathological study with determination of manganese distribution in the brain. Acta Neuropathol 70:273–278

    Article  CAS  PubMed  Google Scholar 

  • Yoon M, Schroeter JD, Nong A, Taylor MD, Dorman DC, Andersen ME, Clewell HJ (2011) Physiologically based pharmacokinetic modeling of fetal and neonatal manganese exposure in humans: describing manganese homeostasis during development. Toxicol Sci 122:297–316

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Chen L, Wang C, Yang X, Gao Y, Tian Y (2016) The role of cord blood BDNF in infant cognitive impairment induced by low-level prenatal manganese exposure: LW birth cohort, China. Chemosphere 163:446–451

    Article  CAS  PubMed  Google Scholar 

  • Yurek DM, Fletcher AM, Smith GM, Seroogy KB, Ziady AG, Molter J, Kowalczyk TH, Padegimas L, Cooper MJ (2009) Long-term transgene expression in the central nervous system using DNA nanoparticles. Mol Ther 17:641–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Liu D, He P (1995) Effects of manganese on learning abilities in school children. Zhonghua Yu Fang Yi Xue Za Zhi 29:156–158

    CAS  PubMed  Google Scholar 

  • Zou Y, Qing L, Zeng X, Shen Y, Zhong Y, Liu J, Li Q, Chen K, Lv Y, Huang D, Liang G, Zhang W, Chen L, Yang Y, Yang X (2014) Cognitive function and plasma BDNF levels among manganese-exposed smelters. Occup Environ Med 71:189–194

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We gratefully acknowledge the following sources of support: the Selma Schottenstein Harris Lab for Research in Parkinson’s, the University of Cincinnati Gardner Family Center for Parkinson’s Disease and Movement Disorders, and the Parkinson’s Disease Support Network-Ohio, Kentucky and Indiana. Additionally, this work was supported by a grant from the University of Cincinnati Gardner Neuroscience Institute-Neurobiology Research Center Pilot Research Program and NIH T32 007051 (RAB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Williams.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailey, R.A., Gutierrez, A., Kyser, T.L. et al. Effects of Preweaning Manganese in Combination with Adult Striatal Dopamine Lesions on Monoamines, BDNF, TrkB, and Cognitive Function in Sprague–Dawley Rats. Neurotox Res 35, 606–620 (2019). https://doi.org/10.1007/s12640-018-9992-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-018-9992-1

Keywords

Navigation