Skip to main content

Advertisement

Log in

Effects of Cannabidiol on Diabetes Outcomes and Chronic Cerebral Hypoperfusion Comorbidities in Middle-Aged Rats

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Diabetes and aging are risk factors for cognitive impairments after chronic cerebral hypoperfusion (CCH). Cannabidiol (CBD) is a phytocannabinoid present in the Cannabis sativa plant. It has beneficial effects on both cerebral ischemic diseases and diabetes. We have recently reported that diabetes interacted synergistically with aging to increase neuroinflammation and memory deficits in rats subjected to CCH. The present study investigated whether CBD would alleviate cognitive decline and affect markers of inflammation and neuroplasticity in the hippocampus in middle-aged diabetic rats submitted to CCH. Diabetes was induced in middle-aged rats (14 months old) by intravenous streptozotocin (SZT) administration. Thirty days later, the diabetic animals were subjected to sham or CCH surgeries and treated with CBD (10 mg/kg, once a day) during 30 days. Diabetes exacerbated cognitive deficits induced by CCH in middle-aged rats. Repeated CBD treatment decreased body weight in both sham- and CCH-operated animals. Cannabidiol improved memory performance and reduced hippocampal levels of inflammation markers (inducible nitric oxide synthase, ionized calcium-binding adapter molecule 1, glial fibrillary acidic protein, and arginase 1). Cannabidiol attenuated the decrease in hippocampal levels of brain-derived neurotrophic factor induced by CCH in diabetic animals, but it did not affect the levels of neuroplasticity markers (growth-associated protein-43 and synaptophysin) in middle-aged diabetic rats. These results suggest that the neuroprotective effects of CBD in middle-aged diabetic rats subjected to CCH are related to a reduction in neuroinflammation. However, they seemed to occur independently of hippocampal neuroplasticity changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akbarzadeh A, Norouzian D, Mehrabi MR, Jamshidi S, Farhangi A, Verdi AA, Mofidian SM, Rad BL (2007) Induction of diabetes by streptozotocin in rats. Indian J Clin Biochem 22:60–64

    Article  CAS  Google Scholar 

  • Alvarez FJ, Lafuente H, Rey-Santano MC, Mielgo VE, Gastiasoro E, Rueda M, Pertwee RG, Castillo AI, Romero J, Martinez-Orgado J (2008) Neuroprotective effects of the nonpsychoactive cannabinoid cannabidiol in hypoxic-ischemic newborn piglets. Pediatr Res 64:653–658

    Article  CAS  Google Scholar 

  • Beiswenger KK, Calcutt NA, Mizisin AP (2008) Dissociation of thermal hypoalgesia and epidermal denervation in streptozotocin-diabetic mice. Neurosci Lett 442:267–272

    Article  CAS  Google Scholar 

  • Booz GW (2011) Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. Free Radic Biol Med 51:1054–1061

    Article  CAS  Google Scholar 

  • Braida D, Pegorini S, Arcidiacono MV, Consalez GG, Croci L, Sala M (2003) Post-ischemic treatment with cannabidiol prevents electroencephalographic flattening, hyperlocomotion and neuronal injury in gerbils. Neurosci Lett 346:61–64

    Article  CAS  Google Scholar 

  • Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7:30–40

    Article  CAS  Google Scholar 

  • Calabrese F, Guidotti G, Racagni G, Riva MA (2013) Reduced neuroplasticity in aged rats: a role for the neurotrophin brain-derived neurotrophic factor. Neurobiol Aging 34:2768–2776

    Article  CAS  Google Scholar 

  • Campos AC, Guimaraes FS (2008) Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats. Psychopharmacology 199:223–230

    Article  CAS  Google Scholar 

  • Campos AC, Moreira FA, Gomes FV, Del Bel EA, Guimaraes FS (2012) Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philos Trans R Soc Lond Ser B Biol Sci 367:3364–3378

    Article  CAS  Google Scholar 

  • Castillo A, Tolon MR, Fernandez-Ruiz J, Romero J, Martinez-Orgado J (2010) The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB(2) and adenosine receptors. Neurobiol Dis 37:434–440

    Article  CAS  Google Scholar 

  • Colton C, Wilcock DM (2010) Assessing activation states in microglia. CNS Neurol Disord Drug Targets 9:174–191

    Article  CAS  Google Scholar 

  • Daulatzai MA (2017) Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res 95:943–972

    Article  CAS  Google Scholar 

  • Deeds MC, Anderson JM, Armstrong AS, Gastineau DA, Hiddinga HJ, Jahangir A, Eberhardt NL, Kudva YC (2011) Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab Anim 45:131–140

    Article  CAS  Google Scholar 

  • Dekel Y, Glucksam Y, Elron-Gross I, Margalit R (2009) Insights into modeling streptozotocin-induced diabetes in ICR mice. Lab Anim 38:55–60

    Article  Google Scholar 

  • Despres JP, Golay A, Sjostrom L, Rimonabant in Obesity-Lipids Study, G (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353:2121–2134

    Article  CAS  Google Scholar 

  • Deveaux V, Cadoudal T, Ichigotani Y, Teixeira-Clerc F, Louvet A, Manin S, Nhieu JT, Belot MP, Zimmer A, Even P, Cani PD, Knauf C, Burcelin R, Bertola A, Le Marchand-Brustel Y, Gual P, Mallat A, Lotersztajn S (2009) Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis. PLoS One 4:e5844

    Article  Google Scholar 

  • Di Marzo V, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z, Fezza F, Miura GI, Palmiter RD, Sugiura T, Kunos G (2001) Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410:822–825

    Article  Google Scholar 

  • Dirnagl U, Endres M (2014) Found in translation: preclinical stroke research predicts human pathophysiology, clinical phenotypes, and therapeutic outcomes. Stroke 45:1510–1518

    Article  Google Scholar 

  • Du SQ, Wang XR, Xiao LY, Tu JF, Zhu W, He T, Liu CZ (2017) Molecular mechanisms of vascular dementia: what can be learned from animal models of chronic cerebral hypoperfusion? Mol Neurobiol 54:3670–3682

    Article  CAS  Google Scholar 

  • Duncombe J, Lennen RJ, Jansen MA, Marshall I, Wardlaw JM, Horsburgh K (2017) Ageing causes prominent neurovascular dysfunction associated with loss of astrocytic contacts and gliosis. Neuropathol Appl Neurobiol 43:477–491

    Article  CAS  Google Scholar 

  • El-Remessy AB, Al-Shabrawey M, Khalifa Y, Tsai NT, Caldwell RB, Liou GI (2006) Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes. Am J Pathol 168:235–244

    Article  CAS  Google Scholar 

  • El-Remessy AB, Khalifa Y, Ola S, Ibrahim AS, Liou GI (2010) Cannabidiol protects retinal neurons by preserving glutamine synthetase activity in diabetes. Mol Vis 16:1487–1495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ergul A, Hafez S, Fouda A, Fagan SC (2016) Impact of comorbidities on acute injury and recovery in preclinical stroke research: focus on hypertension and diabetes. Transl Stroke Res 7:248–260

    Article  CAS  Google Scholar 

  • Esposito G, Filippis DD, Cirillo C, Iuvone T, Capoccia E, Scuderi C, Steardo A, Cuomo R, Steardo L (2013) Cannabidiol in inflammatory bowel diseases: a brief overview. Phytother Res 27:633–636

    Article  CAS  Google Scholar 

  • Ferreira ED, Romanini CV, Mori MA, de Oliveira RM, Milani H (2011) Middle-aged, but not young, rats develop cognitive impairment and cortical neurodegeneration following the four-vessel occlusion/internal carotid artery model of chronic cerebral hypoperfusion. Eur J Neurosci 34:1131–1140

    Article  Google Scholar 

  • Fischer DC, Nissel R, Puhlmann A, Mitzner A, Tiess M, Schmidt R, Haffner D (2009) Differential effects of short-term growth hormone therapy on the cardiovascular risk profile in patients with chronic kidney disease: a pilot study. Clin Nephrol 72:344–352

    Article  CAS  Google Scholar 

  • Gaspar JM, Baptista FI, Macedo MP, Ambrosio AF (2016) Inside the diabetic brain: role of different players involved in cognitive decline. ACS Chem Neurosci 7:131–142

    Article  CAS  Google Scholar 

  • Gomes RM, de Paulo LF, Bonato Panizzon C, Neves CQ, Cordeiro BC, Zanoni JN, Francisco FA, Piovan S, de Freitas Mathias PC, Longhini R, de Mello JCP, de Oliveira JC, Pedrino GR, da Silva Reis AA, Cecchini AL, Marcal Natali MR (2017) Anti-diabetic effects of the ethyl-acetate fraction of Trichilia catigua in streptozo-tocin-induced type 1 diabetic rats. Cell Physiol Biochem 42:1087–1097

    Article  CAS  Google Scholar 

  • Gruden G, Barutta F, Kunos G, Pacher P (2016) Role of the endocannabinoid system in diabetes and diabetic complications. Br J Pharmacol 173:1116–1127

    Article  CAS  Google Scholar 

  • Gruneberg D, Montellano FA, Plaschke K, Li L, Marti HH, Kunze R (2016) Neuronal prolyl-4-hydroxylase 2 deficiency improves cognitive abilities in a murine model of cerebral hypoperfusion. Exp Neurol 286:93–106

    Article  CAS  Google Scholar 

  • Harry GJ (2013) Microglia during development and aging. Pharmacol Ther 139:313–326

    Article  CAS  Google Scholar 

  • Hayakawa K, Mishima K, Irie K, Hazekawa M, Mishima S, Fujioka M, Orito K, Egashira N, Katsurabayashi S, Takasaki K, Iwasaki K, Fujiwara M (2008) Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism. Neuropharmacology 55:1280–1286

    Article  CAS  Google Scholar 

  • Hayakawa K, Irie K, Sano K, Watanabe T, Higuchi S, Enoki M et al. (2009) Therapeutic time window of cannabidiol treatment on delayed ischemic damage via high-mobility group box1-inhibiting mechanism. Biol Pharm Bull 32:1538–1544

  • Ho N, Sommers MS, Lucki I (2013) Effects of diabetes on hippocampal neurogenesis: links to cognition and depression. Neurosci Biobehav Rev 37:1346–1362

    Article  CAS  Google Scholar 

  • Horvath B, Mukhopadhyay P, Hasko G, Pacher P (2012) The endocannabinoid system and plant-derived cannabinoids in diabetes and diabetic complications. Am J Pathol 180:432–442

    Article  CAS  Google Scholar 

  • Hu Y, Zhang M, Chen Y, Yang Y, Zhang JJ (2018) Postoperative intermittent fasting prevents hippocampal oxidative stress and memory deficits in a rat model of chronic cerebral hypoperfusion. Eur J Nutr

  • Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808

    Article  CAS  Google Scholar 

  • Ignatowska-Jankowska B, Jankowski MM, Swiergiel AH (2011) Cannabidiol decreases body weight gain in rats: involvement of CB2 receptors. Neurosci Lett 490:82–84

    Article  CAS  Google Scholar 

  • Jadoon KA, Ratcliffe SH, Barrett DA, Thomas EL, Stott C, Bell JD, O'Sullivan SE, Tan GD (2016) Efficacy and safety of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group pilot study. Diabetes Care 39:1777–1786

    Article  CAS  Google Scholar 

  • Jeon WJ, Oh JS, Park MS, Ji GE (2013) Anti-hyperglycemic effect of fermented ginseng in type 2 diabetes mellitus mouse model. Phytother Res 27:166–172

    Article  Google Scholar 

  • Jourdan T, Godlewski G, Kunos G (2016) Endocannabinoid regulation of beta-cell functions: implications for glycaemic control and diabetes. Diabetes Obes Metab 18:549–557

    Article  CAS  Google Scholar 

  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  CAS  Google Scholar 

  • Koellhoffer EC, McCullough LD, Ritzel RM (2017) Old maids: aging and its impact on microglia function. Int J Mol Sci 18

  • Kunos G, Tam J (2011) The case for peripheral CB(1) receptor blockade in the treatment of visceral obesity and its cardiometabolic complications. Br J Pharmacol 163:1423–1431

    Article  CAS  Google Scholar 

  • Lafuente H, Alvarez FJ, Pazos MR, Alvarez A, Rey-Santano MC, Mielgo V, Murgia-Esteve X, Hilario E, Martinez-Orgado J (2011) Cannabidiol reduces brain damage and improves functional recovery after acute hypoxia-ischemia in newborn pigs. Pediatr Res 70:272–277

    Article  CAS  Google Scholar 

  • Laprairie RB, Bagher AM, Kelly ME, Denovan-Wright EM (2015) Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol 172:4790–4805

    Article  CAS  Google Scholar 

  • Liu HX, Zhang JJ, Zheng P, Zhang Y (2005) Altered expression of MAP-2, GAP-43, and synaptophysin in the hippocampus of rats with chronic cerebral hypoperfusion correlates with cognitive impairment. Brain Res Mol Brain Res 139:169–177

    Article  CAS  Google Scholar 

  • Liu H, Zhang J, Yang Y, Zhang L, Zeng X (2012) Decreased cerebral perfusion and oxidative stress result in acute and delayed cognitive impairment. Curr Neurovasc Res 9(3):152–158

  • Liu Z, Hu M, Lu P, Wang H, Qi Q, Xu J, Xiao Y, Fan M, Jia Y, Zhang D (2017) Cerebrolysin alleviates cognitive deficits induced by chronic cerebral hypoperfusion by increasing the levels of plasticity-related proteins and decreasing the levels of apoptosis-related proteins in the rat hippocampus. Neurosci Lett 651:72–78

    Article  CAS  Google Scholar 

  • Matias I, Gonthier MP, Orlando P, Martiadis V, De Petrocellis L, Cervino C, Petrosino S, Hoareau L, Festy F, Pasquali R, Roche R, Maj M, Pagotto U, Monteleone P, Di Marzo V (2006) Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. J Clin Endocrinol Metab 91:3171–3180

    Article  CAS  Google Scholar 

  • Matouk AI, Taye A, El-Moselhy MA, Heeba GH, Abdel-Rahman AA (2008) Abnormal cannabidiol confers cardioprotection in diabetic rats independent of glycemic control. Eur J Pharmacol pp 256–264

  • McKillop AM, Moran BM, Abdel-Wahab YH, Gormley NM, Flatt PR (2016) Metabolic effects of orally administered small-molecule agonists of GPR55 and GPR119 in multiple low-dose streptozotocin-induced diabetic and incretin-receptor-knockout mice. Diabetologia 59:2674–2685

    Article  CAS  Google Scholar 

  • Mechoulam R, Gaoni Y (1965) Hashish. IV. The isolation and structure of cannabinolic cannabidiolic and cannabigerolic acids. Tetrahedron 21:1223–1229

    Article  CAS  Google Scholar 

  • Mechoulam R, Peters M, Murillo-Rodriguez E, Hanus LO (2007) Cannabidiol—recent advances. Chem Biodivers 4:1678–1692

    Article  CAS  Google Scholar 

  • Minnerup J, Wersching H, Teuber A, Wellmann J, Eyding J, Weber R, Reimann G, Weber W, Krause LU, Kurth T, Berger K, Investigators, R (2016) Outcome after thrombectomy and intravenous thrombolysis in patients with acute ischemic stroke: a prospective observational study. Stroke 47:1584–1592

    Article  CAS  Google Scholar 

  • Mishima K, Hayakawa K, Abe K, Ikeda T, Egashira N, Iwasaki K, Fujiwara M (2005) Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism. Stroke 36:1077–1082

    Article  Google Scholar 

  • Mori MA, Meyer E, Soares LM, Milani H, Guimaraes FS, de Oliveira RMW (2017) Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia. Prog Neuro-Psychopharmacol Biol Psychiatry 75:94–105

    Article  CAS  Google Scholar 

  • Morrison CD, Pistell PJ, Ingram DK, Johnson WD, Liu Y, Fernandez-Kim SO, White CL, Purpera MN, Uranga RM, Bruce-Keller AJ, Keller JN (2010) High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling. J Neurochem 114:1581–1589

    Article  CAS  Google Scholar 

  • Nishijima Y, Akamatsu Y, Yang SY, Lee CC, Baran U, Song S, Wang RK, Tominaga T, Liu J (2016) Impaired collateral flow compensation during chronic cerebral hypoperfusion in the type 2 diabetic mice. Stroke 47:3014–3021

    Article  Google Scholar 

  • Nunes Santiago A, Dias Fiuza Ferreira E, Weffort de Oliveira RM, Milani H (2018) Cognitive, neurohistological and mortality outcomes following the four-vessel occlusion/internal carotid artery model of chronic cerebral hypoperfusion: the impact of diabetes and aging. Behav Brain Res 339:169–178

    Article  Google Scholar 

  • Pazos MR, Mohammed N, Lafuente H, Santos M, Martinez-Pinilla E, Moreno E, Valdizan E, Romero J, Pazos A, Franco R, Hillard CJ, Alvarez FJ, Martinez-Orgado J (2013) Mechanisms of cannabidiol neuroprotection in hypoxic-ischemic newborn pigs: role of 5HT(1A) and CB2 receptors. Neuropharmacology 71:282–291

    Article  CAS  Google Scholar 

  • Pertwee RG (2005) Pharmacological actions of cannabinoids. Handb Exp Pharmacol. 1–51

  • Pertwee RG (2008a) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215

    Article  CAS  Google Scholar 

  • Pertwee RG (2008b) Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr Med Che 17:1360–1381

  • Polidori MC, Pientka L, Mecocci P (2012) A review of the major vascular risk factors related to Alzheimer's disease. J Alzheimers Dis 32(3):521–530

  • Popa-Wagner A, Glavan DG, Olaru A, Olaru DG, Margaritescu O, Tica O, Surugiu R, Sandu RE (2018) Present status and future challenges of new therapeutic targets in preclinical models of stroke in aged animals with/without comorbidities. Int J Mol Sci 19

  • Rajesh M, Mukhopadhyay P, Batkai S, Hasko G, Liaudet L, Drel VR, Obrosova IG, Pacher P (2007) Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am J Physiol Heart Circ Physiol 293:H610–H619

    Article  CAS  Google Scholar 

  • Rajesh M, Mukhopadhyay P, Batkai S, Patel V, Saito K, Matsumoto S, Kashiwaya Y, Horvath B, Mukhopadhyay B, Becker L, Hasko G, Liaudet L, Wink DA, Veves A, Mechoulam R, Pacher P (2010) Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol 56:2115–2125

    Article  CAS  Google Scholar 

  • Schiavon AP, Soares LM, Bonato JM, Milani H, Guimaraes FS, Weffort de Oliveira RM (2014) Protective effects of cannabidiol against hippocampal cell death and cognitive impairment induced by bilateral common carotid artery occlusion in mice. Neurotox Res 26:307–316

    Article  CAS  Google Scholar 

  • Schoeder CT, Kaleta M, Mahardhika AB, Olejarz-Maciej A, Łażewska D, Kieć-Kononowicz K, Müller CE (2018) Structure-activity relationships of imidazothiazinones and analogs as antagonists of the cannabinoid-activated orphan G protein-coupled receptor GPR18. Eur J Med Chem 15(55):381–397

  • Scopinho AA, Guimaraes FS, Correa FM, Resstel LB (2011) Cannabidiol inhibits the hyperphagia induced by cannabinoid-1 or serotonin-1A receptor agonists. Pharmacol Biochem Behav 98:268–272

    Article  CAS  Google Scholar 

  • Shang J, Yamashita T, Zhai Y, Nakano Y, Morihara R, Fukui Y, Hishikawa N, Ohta Y, Abe K (2016) Strong impact of chronic cerebral hypoperfusion on neurovascular unit, cerebrovascular remodeling, and neurovascular trophic coupling in Alzheimer's disease model mouse. J Alzheimer’s Dis 52:113–126

    Article  CAS  Google Scholar 

  • Shetty AK, Hattiangady B, Rao MS, Shuai B (2011) Deafferentation enhances neurogenesis in the young and middle aged hippocampus but not in the aged hippocampus. Hippocampus 21:631–646

    Article  Google Scholar 

  • Straiker A, Dvorakova M, Zimmowitch A, Mackie KP (2018) Cannabidiol inhibits endocannabinoid signaling in autaptic hippocampal neurons. Mol Pharmacol 94:743–748

    Article  CAS  Google Scholar 

  • Sweetnam D, Holmes A, Tennant KA, Zamani A, Walle M, Jones P, Wong C, Brown CE (2012) Diabetes impairs cortical plasticity and functional recovery following ischemic stroke. J Neurosci 32:5132–5143

    Article  CAS  Google Scholar 

  • Tam J, Vemuri VK, Liu J, Batkai S, Mukhopadhyay B, Godlewski G, Osei-Hyiaman D, Ohnuma S, Ambudkar SV, Pickel J, Makriyannis A, Kunos G (2010) Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Invest 120:2953–2966

    Article  CAS  Google Scholar 

  • Valerio Romanini C, Dias Fiuza Ferreira E, Correia Bacarin C, Verussa MH, Weffort de Oliveira RM, Milani H (2013) Neurohistological and behavioral changes following the four-vessel occlusion/internal carotid artery model of chronic cerebral hypoperfusion: comparison between normotensive and spontaneously hypertensive rats. Behav Brain Res 252:214–221

    Article  Google Scholar 

  • Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S, Group, R.I.-E.S (2005) Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365:1389–1397

    Article  Google Scholar 

  • van Harten B, Oosterman J, Muslimovic D, van Loon BJ, Scheltens P, Weinstein HC (2007) Cognitive impairment and MRI correlates in the elderly patients with type 2 diabetes mellitus. Age Ageing 36:164–170

    Article  Google Scholar 

  • Wang X, Xing A, Xu C, Cai Q, Liu H, Li L (2010) Cerebrovascular hypoperfusion induces spatial memory impairment, synaptic changes, and amyloid-beta oligomerization in rats. J Alzheimers Dis 21:813–822

    Article  CAS  Google Scholar 

  • Weiss L, Zeira M, Reich S, Har-Noy M, Mechoulam R, Slavin S, Gallily R (2006) Cannabidiol lowers incidence of diabetes in non-obese diabetic mice. Autoimmunity 39:143–151

    Article  CAS  Google Scholar 

  • Weiss L, Zeira M, Reich S, Slavin S, Raz I, Mechoulam R, Gallily R (2008) Cannabidiol arrests onset of autoimmune diabetes in NOD mice. Neuropharmacology 54:244–249

    Article  CAS  Google Scholar 

  • Wongchitrat P, Lansubsakul N, Kamsrijai U, Sae-Ung K, Mukda S, Govitrapong P (2016) Melatonin attenuates the high-fat diet and streptozotocin-induced reduction in rat hippocampal neurogenesis. Neurochem Int 100:97–109

    Article  CAS  Google Scholar 

  • Wu KK, Huan Y (2008) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol Chapter 5(Unit 5):47

    PubMed  Google Scholar 

  • Wu Z, Wang H, Ni F, Jiang X, Xu Z, Liu C, Cai Y, Fu H, Luo J, Chen W, Chen B, Yu Z (2018) Islet transplantation improved penile tissue fibrosis in a rat model of type 1 diabetes. BMC Endocrine disorders, 27, 18(1):49

  • Yang Y, Gao L (2017) Celecoxib alleviates memory deficits by downregulation of COX-2 expression and upregulation of the BDNF-TrkB signaling pathway in a diabetic rat model. J Mol Neurosci 62:188–198

    Article  CAS  Google Scholar 

  • Zanoni JN, Buttow NC, Bazotte RB, Miranda Neto MH (2003) Evaluation of the population of NADPH-diaphorase-stained and myosin-V myenteric neurons in the ileum of chronically streptozotocin-diabetic rats treated with ascorbic acid. Auton Neurosci 104:32–38

    Article  CAS  Google Scholar 

  • Zhang X, Gao S, Niu J, Li P, Deng J, Xu S, Wang Z, Wang W, Kong D, Li C (2016) Cannabinoid 2 receptor agonist improves systemic sensitivity to insulin in high-fat diet/streptozotocin-induced diabetic mice. Cell Physiol Biochem 40:1175–1185

    Article  Google Scholar 

  • Zuloaga KL, Johnson LA, Roese NE, Marzulla T, Zhang W, Nie X, Alkayed FN, Hong C, Grafe MR, Pike MM, Raber J, Alkayed NJ (2016) High fat diet-induced diabetes in mice exacerbates cognitive deficit due to chronic hypoperfusion. J Cereb Blood Flow Metab 36:1257–1270

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Marco Alberto Trombelli for his technical support. This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), National Institute of Science and Translational Medicine (465458/2014-9), Universidade Estadual de Maringá.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rúbia Maria Weffort de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santiago, A.N., Mori, M.A., Guimarães, F.S. et al. Effects of Cannabidiol on Diabetes Outcomes and Chronic Cerebral Hypoperfusion Comorbidities in Middle-Aged Rats. Neurotox Res 35, 463–474 (2019). https://doi.org/10.1007/s12640-018-9972-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-018-9972-5

Keywords

Navigation