Skip to main content

Advertisement

Log in

A C. elegans Model for the Study of RAGE-Related Neurodegeneration

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The receptor for advanced glycation products (RAGE) is a cell surface, multi-ligand receptor belonging to the immunoglobulin superfamily; this receptor is implicated in a variety of maladies, via inflammatory pathways and induction of oxidative stress. Currently, RAGE is being studied using a limited number of mammalian in vivo, and some complementary in vitro, models. Here, we present a Caenorhabditis elegans model for the study of RAGE-related pathology: a transgenic strain, expressing RAGE in all neurons, was generated and subsequently tested behaviorally, developmentally, and morphologically. In addition to RAGE expression being associated with a significantly shorter lifespan, the following behavioral observations were made when RAGE-expressing worms were compared to the wild type: RAGE-expressing worms showed an impaired dopaminergic system, evaluated by measuring the fluorescent signal of GFP tagging; these worms exhibited decreased locomotion—both general and following ethanol exposure—as measured by counting body bends in adult worms; RAGE expression was also associated with impaired recovery of quiescence and pharyngeal pumping secondary to heat shock, as a significantly smaller fraction of RAGE-expressing worms engaged in these behaviors in the 2 h immediately following the heat shock. Finally, significant developmental differences were also found between the two strains: RAGE expression leads to a significantly smaller fraction of hatched eggs 24 h after laying and also to a significantly slower developmental speed overall. As evidence for the role of RAGE in a variety of neuropathologies accumulates, the use of this novel and expedient model should facilitate the elucidation of relevant underlying mechanisms and also the development of efficient therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

RAGE:

Receptor for advanced glycation end products

HMGB1:

High-mobility group box 1

LPA:

Lysophosphatidic acid

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

HD:

Huntington’s disease

CJD:

Creutzfeldt-Jakob’s disease

ALS:

Amyotrophic lateral sclerosis

References

  • Abrigo J, Rivera JC, Aravena J, Cabrera D, Simon F, Ezquer F, Ezquer M, Cabello-Verrugio C (2016) High fat diet-induced skeletal muscle wasting is decreased by mesenchymal stem cells administration: implications on oxidative stress, ubiquitin proteasome pathway activation, and myonuclear apoptosis. Oxidative Med Cell Longev 2016:9047821

    Article  Google Scholar 

  • Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117(4):421–426

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2(8):675–680

    Article  CAS  PubMed  Google Scholar 

  • Avila DS, Somlyai G, Somlyai I, Aschner M (2012) Anti-aging effects of deuterium depletion on Mn-induced toxicity in a C. elegans model. Toxicol Lett 211(3):319–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C, Kislinger T, Stern DM, Schmidt AM, De Caterina R (2002) Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105(7):816–822

    Article  CAS  PubMed  Google Scholar 

  • Baynes JW (2003) Chemical modification of proteins by lipids in diabetes. Clin Chem Lab Med 41(9):1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP (1998) AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res 37(3):586–600

    Article  CAS  PubMed  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, Nowygrod R, Neeper M, Przysiecki C, Shaw A (1993) Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol 143(6):1699–1712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brownlee M (2000) Negative consequences of glycation. Metabolism 49(2 Suppl 1):9–13

    Article  CAS  PubMed  Google Scholar 

  • Bucciarelli LG, Wendt T, Rong L, Lalla E, Hofmann MA, Goova MT, Taguchi A, Yan SF, Yan SD, Stern DM, Schmidt AM (2002) RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell Mol Life Sci 59(7):1117–1128

    Article  CAS  PubMed  Google Scholar 

  • Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, Nagashima M, Morser J, Arnold B, Preissner KT, Nawroth PP (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med 198(10):1507–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Burdette AJ, Porter JC, Ricketts JC, Fox SA, Nery FC, Hewett JW, Berkowitz LA, Breakefield XO, Caldwell KA, Caldwell GA (2010) The early-onset torsion dystonia-associated protein, torsinA, is a homeostatic regulator of endoplasmic reticulum stress response. Hum Mol Genet 19(18):3502–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu HP, Liao Y, Novak JS, Hu Z, Merkin JJ, Shymkiv Y, Braeckman BP, Dorovkov MV, Nguyen A, Clifford PM, Nagele RG, Harrison DE, Ellis RE, Ryazanov AG (2014) Germline quality control: eEF2K stands guard to eliminate defective oocytes. Dev Cell 28(5):561–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culetto E, Sattelle DB (2000) A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet 9(6):869–877

    Article  CAS  PubMed  Google Scholar 

  • Daffu G, del Pozo CH, O'Shea KM, Ananthakrishnan R, Ramasamy R, Schmidt AM (2013) Radical roles for RAGE in the pathogenesis of oxidative stress in cardiovascular diseases and beyond. Int J Mol Sci 14(10):19891–19910

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies AG, McIntire SL (2005) Ethanol intoxication WormBook, ed. The C. elegans Research Community, from http://www.wormbook.org

  • Davies AG, Pierce-Shimomura JT, Kim H, VanHoven MK, Thiele TR, Bonci A, Bargmann CI, McIntire SL (2003) A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115(6):655–666

    Article  CAS  PubMed  Google Scholar 

  • Davis KC, Raizen DM (2017) A mechanism for sickness sleep: lessons from invertebrates. J Physiol 595(16):5415–5424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ejdesjo A, Brings S, Fleming T, Fred RG, Nawroth PP, Eriksson UJ (2016) Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy. Reprod Toxicol 62:62–70

    Article  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247

    Article  CAS  PubMed  Google Scholar 

  • Greene MF, Hare JW, Cloherty JP, Benacerraf BR, Soeldner JS (1989) First-trimester hemoglobin A1 and risk for major malformation and spontaneous abortion in diabetic pregnancy. Teratology 39(3):225–231

    Article  CAS  PubMed  Google Scholar 

  • Hanewinckel R, Ikram MA, Van Doorn PA (2016) Peripheral neuropathies. Handb Clin Neurol 138:263–282

    Article  CAS  PubMed  Google Scholar 

  • Hanford LE, Enghild JJ, Valnickova Z, Petersen SV, Schaefer LM, Schaefer TM, Reinhart TA, Oury TD (2004) Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE). J Biol Chem 279(48):50019–50024

    Article  CAS  PubMed  Google Scholar 

  • Harris RA (1999) Ethanol actions on multiple ion channels: which are important? Alcohol Clin Exp Res 23(10):1563–1570

    CAS  PubMed  Google Scholar 

  • He M, Kubo H, Morimoto K, Fujino N, Suzuki T, Takahasi T, Yamada M, Yamaya M, Maekawa T, Yamamoto Y, Yamamoto H (2011) Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. EMBO Rep 12(4):358–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill AJ, Mansfield R, Lopez JM, Raizen DM, Van Buskirk C (2014) Cellular stress induces a protective sleep-like state in C. elegans. Curr Biol 24(20):2399–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97(7):889–901

    Article  CAS  PubMed  Google Scholar 

  • Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13(11):1385–1393

    Article  CAS  PubMed  Google Scholar 

  • Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, Fang L, Halfnight E, Lee D, Lin J, Lorch A, McKay S, Okada HM, Pan J, Schulz AK, Tu D, Wong K, Zhao Z, Alexeyenko A, Burglin T, Sonnhammer E, Schnabel R, Jones SJ, Marra MA, Baillie DL, Moerman DG (2007) High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 5(9):e237

    Article  PubMed  PubMed Central  Google Scholar 

  • Juranek J, Ray R, Banach M, Rai V (2015) Receptor for advanced glycation end-products in neurodegenerative diseases. Rev Neurosci 26(6):691–698

    Article  PubMed  Google Scholar 

  • Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5(5):387–398

    Article  CAS  PubMed  Google Scholar 

  • Kane CJ, Drew PD (2016) Inflammatory responses to alcohol in the CNS: nuclear receptors as potential therapeutics for alcohol-induced neuropathologies. J Leukoc Biol 100(5):951–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Ryu MJ, Han J, Jang Y, Kim J, Lee MJ, Ryu I, Ju X, Oh E, Chung W, Kweon GR, Heo JY (2017) Activation of the HMGB1-RAGE axis upregulates TH expression in dopaminergic neurons via JNK phosphorylation. Biochem Biophys Res Commun 493(1):358–364

    Article  CAS  PubMed  Google Scholar 

  • Ko SY, Ko HA, Chu KH, Shieh TM, Chi TC, Chen HI, Chang WC, Chang SS (2015) The possible mechanism of advanced glycation end products (AGEs) for Alzheimer’s disease. PLoS One 10(11):e0143345

    Article  PubMed  PubMed Central  Google Scholar 

  • Koppes LL, Dekker JM, Hendriks HF, Bouter LM, Heine RJ (2005) Moderate alcohol consumption lowers the risk of type 2 diabetes: a meta-analysis of prospective observational studies. Diabetes Care 28(3):719–725

    Article  PubMed  Google Scholar 

  • Kuhla A, Ludwig SC, Kuhla B, Munch G, Vollmar B (2015) Advanced glycation end products are mitogenic signals and trigger cell cycle reentry of neurons in Alzheimer’s disease brain. Neurobiol Aging 36(2):753–761

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liu D, Sun L, Lu Y, Zhang Z (2012) Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci 317(1–2):1–5

    Article  CAS  PubMed  Google Scholar 

  • Markaki M, Tavernarakis N (2010) Modeling human diseases in Caenorhabditis elegans. Biotechnol J 5(12):1261–1276

    Article  CAS  PubMed  Google Scholar 

  • Martin G, O'Connell RJ, Pietrzykowski AZ, Treistman SN, Ethier MF, Madison JM (2008) Interleukin-4 activates large-conductance, calcium-activated potassium (BKCa) channels in human airway smooth muscle cells. Exp Physiol 93(7):908–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCulloch DK, Campbell IW, Prescott RJ, Clarke BF (1980) Effect of alcohol intake on symptomatic peripheral neuropathy in diabetic men. Diabetes Care 3(2):245–247

    Article  CAS  PubMed  Google Scholar 

  • Mello C, Fire A (1995) DNA transformation. Methods Cell Biol 48:451–482

    Article  CAS  PubMed  Google Scholar 

  • Mendoza AD, Woodruff TK, Wignall SM, O'Halloran TV (2017) Zinc availability during germline development impacts embryo viability in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 191:194–202

    Article  CAS  PubMed  Google Scholar 

  • Mimouni F, Miodovnik M, Siddiqi TA, Khoury J, Tsang RC (1988) Perinatal asphyxia in infants of insulin-dependent diabetic mothers. J Pediatr 113(2):345–353

    Article  CAS  PubMed  Google Scholar 

  • Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267(21):14998–15004

    CAS  PubMed  Google Scholar 

  • Nelson MD, Lee KH, Churgin MA, Hill AJ, Van Buskirk C, Fang-Yen C, Raizen DM (2014) FMRFamide-like FLP-13 neuropeptides promote quiescence following heat stress in Caenorhabditis elegans. Curr Biol 24(20):2406–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson MD, Janssen T, York N, Lee KH, Schoofs L, Raizen DM (2015) FRPR-4 is a G-protein coupled neuropeptide receptor that regulates behavioral quiescence and posture in Caenorhabditis elegans. PLoS One 10(11):e0142938

    Article  PubMed  PubMed Central  Google Scholar 

  • Nonet ML, Saifee O, Zhao H, Rand JB, Wei L (1998) Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci 18(1):70–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pamplona R, Ilieva E, Ayala V, Bellmunt MJ, Cacabelos D, Dalfo E, Ferrer I, Portero-Otin M (2008) Maillard reaction versus other nonenzymatic modifications in neurodegenerative processes. Ann N Y Acad Sci 1126:315–319

    Article  CAS  PubMed  Google Scholar 

  • Pinkas A, Aschner M (2016) Advanced glycation end-products and their receptors: related pathologies, recent therapeutic strategies, and a potential model for future neurodegeneration studies. Chem Res Toxicol 29(5):707–714

    Article  CAS  PubMed  Google Scholar 

  • Pinkas A, Aschner M (2017) AGEs/RAGE-related neurodegeneration: daf-16 as a mediator, insulin as an ameliorant, and C. elegans as an expedient research model. Chem Res Toxicol 30(1):38–42

    Article  CAS  PubMed  Google Scholar 

  • Pla A, Pascual M, Guerri C (2016) Autophagy constitutes a protective mechanism against ethanol toxicity in mouse astrocytes and neurons. PLoS One 11(4):e0153097

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai V, Toure F, Chitayat S, Pei R, Song F, Li Q, Zhang J, Rosario R, Ramasamy R, Chazin WJ, Schmidt AM (2012) Lysophosphatidic acid targets vascular and oncogenic pathways via RAGE signaling. J Exp Med 209(13):2339–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramasamy R, Shekhtman A, Schmidt AM (2016) The multiple faces of RAGE—opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets 20(4):431–446

    Article  CAS  PubMed  Google Scholar 

  • Ringstad N, Horvitz B, Koelle M (2005) Locomoiton. WormBook, ed. The C. elegans Research Community, from http://www.wormbook.org

  • Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, Fang Y, Larson JL, McDougall JA, Chester JA, Saez C, Pugsley TA, Gershanik O, Low MJ, Grandy DK (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90(6):991–1001

    Article  CAS  PubMed  Google Scholar 

  • Salahuddin P, Rabbani G, Khan RH (2014) The role of advanced glycation end products in various types of neurodegenerative disease: a therapeutic approach. Cell Mol Biol Lett 19(3):407–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267(21):14987–14997

    CAS  PubMed  Google Scholar 

  • Schmidt AM, Mora R, Cao R, Yan SD, Brett J, Ramakrishnan R, Tsang TC, Simionescu M, Stern D (1994) The endothelial cell binding site for advanced glycation end products consists of a complex: an integral membrane protein and a lactoferrin-like polypeptide. J Biol Chem 269(13):9882–9888

    CAS  PubMed  Google Scholar 

  • Schmidt AM, Yan SD, Stern DM (1995) The dark side of glucose. Nat Med 1(10):1002–1004

    Article  CAS  PubMed  Google Scholar 

  • Serratos IN, Castellanos P, Pastor N, Millan-Pacheco C, Colin-Gonzalez AL, Rembao D, Perez-Montfort R, Cabrera N, Sanchez-Garcia A, Gomez I, Rangel-Lopez E, Santamaria A (2016) Early expression of the receptor for advanced glycation end products in a toxic model produced by 6-hydroxydopamine in the rat striatum. Chem Biol Interact 249:10–18

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44(2):129–146

    Article  CAS  PubMed  Google Scholar 

  • Starich TA, Hall DH, Greenstein D (2014) Two classes of gap junction channels mediate soma-germline interactions essential for germline proliferation and gametogenesis in Caenorhabditis elegans. Genetics 198(3):1127–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stogsdill JA, Stogsdill MP, Porter JL, Hancock JM, Robinson AB, Reynolds PR (2012) Embryonic overexpression of receptors for advanced glycation end-products by alveolar epithelium induces an imbalance between proliferation and apoptosis. Am J Respir Cell Mol Biol 47(1):60–66

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1):110–156

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100(1):64–119

    Article  CAS  PubMed  Google Scholar 

  • Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, Hofmann MA, Kislinger T, Ingram M, Lu A, Tanaka H, Hori O, Ogawa S, Stern DM, Schmidt AM (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405(6784):354–360

    Article  CAS  PubMed  Google Scholar 

  • Teismann P, Sathe K, Bierhaus A, Leng L, Martin HL, Bucala R, Weigle B, Nawroth PP, Schulz JB (2012) Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity. Neurobiol Aging 33(10):2478–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornalley PJ (1998) Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol (Noisy-le-grand) 44(7):1013–1023

    CAS  Google Scholar 

  • Vlassara H, Bucala R, Striker L (1994) Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Investig 70(2):138–151

    CAS  PubMed  Google Scholar 

  • Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA (2018) Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 9(2):119

    Article  PubMed  PubMed Central  Google Scholar 

  • Way GL, Wolfe RR, Eshaghpour E, Bender RL, Jaffe RB, Ruttenberg HD (1979) The natural history of hypertrophic cardiomyopathy in infants of diabetic mothers. J Pediatr 95(6):1020–1025

    Article  CAS  PubMed  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 275(938):327–348

    Article  CAS  Google Scholar 

  • Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM (1996) RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382(6593):685–691

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adi Pinkas.

Ethics declarations

Grant Support for This Research

This research was supported by NIEHS—R01 ES07331, R01 ES10563, and R01 ES020852.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinkas, A., Lee, K.H., Chen, P. et al. A C. elegans Model for the Study of RAGE-Related Neurodegeneration. Neurotox Res 35, 19–28 (2019). https://doi.org/10.1007/s12640-018-9918-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-018-9918-y

Keywords

Navigation