Skip to main content

Advertisement

Log in

The Gender-Biased Effects of Intranasal MPTP Administration on Anhedonic- and Depressive-Like Behaviors in C57BL/6 Mice: the Role of Neurotrophic Factors

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Depression is a highly prevalent and debilitating non-motor symptom observed during the early stages of Parkinson’s disease (PD). Although PD prevalence is higher in men, the depressive symptoms in PD are more common in women. Therefore, the aim of this study was to investigate the development of anhedonic- and depressive-like behaviors in male and female mice and the potential mechanisms related to depressive symptoms in an experimental model of PD. Young adult male and female C57BL/6 mice (3 months old) received a single intranasal (i.n.) administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and were submitted to a battery of behavioral tasks (sucrose consumption, splash test, tail suspension, forced swimming and open field tests) to assess their emotional and motor profiles. Considering the role of sexual hormones in emotional behaviors, the same protocol of i.n. MPTP administration and the splash, tail suspension, and open field tests were conducted in ovariectomized (OVX) and aged C57BL/6 female (20 months old) mice. We also investigated the immunocontent of neurotrophins (BDNF, GDNF, and VEGF) in the hippocampus and prefrontal cortex by western blot. I.n.  MPTP administration induced more pronounced anhedonic- and selective depressive-like behaviors in female adult mice, also observed in OVX and aged female mice, with the absence of motor impairments. Furthermore, MPTP induced a more pronounced depletion of neurotrophins in the prefrontal cortex and hippocampus in female than male mice. This study provides new evidence of increased susceptibility of female mice to anhedonic- and depressive-like behaviors following i.n. MPTP administration. The observed gender-related effects of MPTP on emotional parameters seem to be linked to increased depletion of neurotrophins (particularly BDNF and GDNF) in the hippocampus and prefrontal cortex of female mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Funding

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Universal 408676/2016-7), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Programa de Apoio aos Núcleos de Excelência (PRONEX - Project NENASC), Fundação de Apoio à Pesquisa do Estado de Santa Catarina (FAPESC), FINEP (Financiadora de Estudos e Projetos – IBN-Net no. 01.06.0842-00), and INCT (Instituto Nacional de Ciência e Tecnologia) for Excitotoxicity and Neuroprotection. MGS and JMM receive scholarships from CNPq; MM receives scholarship from CAPES. RW and RDP are supported by research fellowships from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Daniel Prediger.

Ethics declarations

This study was developed in accordance with the recommendations of the Guide for the Care and Use of Laboratory Animals of the National Institute of Health and was approved by the Committee on Ethics of Animal Experiments of the Universidade Federal de Santa Catarina (protocol number 2895030817). All the efforts were made to minimize the number of animals used and their suffering.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schamne, M.G., Mack, J.M., Moretti, M. et al. The Gender-Biased Effects of Intranasal MPTP Administration on Anhedonic- and Depressive-Like Behaviors in C57BL/6 Mice: the Role of Neurotrophic Factors. Neurotox Res 34, 808–819 (2018). https://doi.org/10.1007/s12640-018-9912-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-018-9912-4

Keywords

Navigation