Skip to main content
Log in

Transcriptome-Wide Identification of Differentially Expressed Genes and Long Non-coding RNAs in Aluminum-Treated Rat Hippocampus

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Aluminum (Al) is an environmental neurotoxicant with a wide exposure, but the molecular mechanism underlying its toxicity remains unclear. We used RNA sequencing (RNA-seq) in the hippocampus of Al-treated rats to identify 96 upregulated and 652 downregulated mRNAs, and 37 dysregulated long non-coding (lnc)RNAs. Gene ontology analysis showed that dysregulated genes were involved in glial cell differentiation, neural transmission, and vesicle trafficking. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed clustering of differentially expressed mRNAs and lncRNA target genes in several pathways, including the “adenosine monophosphate-activated protein kinase signaling pathway,” “extracellular matrix receptor interaction,” “the phosphatidylinositol 3 kinase–protein kinase B signaling pathway,” and “focal adhesion” signaling pathway. RNA-seq results were validated by reverse transcription (RT)-PCR. Additionally, Al induced changes to the number and morphology of glial cells in the hippocampus of rats, as shown by glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) immunochemistry. RT-PCR and western blotting validated the significant increase in expression of glial cell-related genes GFAP and SOX10 following Al exposure compared with control rats, consistent with RNA-seq results. Collectively, these results suggest that aberrant mRNAs and lncRNAs respond to Al neurotoxicity, and that glial cell-related genes play important roles in the Al neurotoxicity mechanism. These findings provide the basis for designing targeted approaches for the treatment or prevention of Al-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bassani, T. B., Bonato, J. M., Machado, M. M. F., Coppola-Segovia, V., Moura, E. L. R., Zanata, S. M., Oliveira, R., Vital, M.,(2017) Decrease in adult neurogenesis and neuroinflammation are involved in spatial memory impairment in the Streptozotocin-induced model of sporadic Alzheimer’s disease in rats. Molecular neurobiology

  • Bharathi, Jagannatha Rao KS, Stein R (2003) First evidence on induced topological changes in supercoiled DNA by an aluminium D-aspartate complex. J Biol Inorg Chem 8(8):823–830

  • Bondy SC (2010) The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology 31(5):575–581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bondy SC (2014) Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology 315:1–7

    Article  PubMed  CAS  Google Scholar 

  • Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave KA, Birchmeier C, Wegner M (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15(1):66–78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cameron HA, Mckay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435(4):406–417

    Article  PubMed  CAS  Google Scholar 

  • Crepeaux G, Eidi H, David MO, Baba-Amer Y, Tzavara E, Giros B, Authier FJ, Exley C, Shaw CA, Cadusseau J, Gherardi RK (2017) Non-linear dose-response of aluminium hydroxide adjuvant particles: selective low dose neurotoxicity. Toxicology 375:48–57

    Article  PubMed  CAS  Google Scholar 

  • Dempsey JL, Cui JY (2017) Long non-coding RNAs: a novel paradigm for toxicology. Toxicol Sci 155(1):3–21

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erazi H, Sansar W, Ahboucha S, Gamrani H (2010) Aluminum affects glial system and behavior of rats. C R Biol 333(1):23–27

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874

    Article  PubMed  CAS  Google Scholar 

  • Exley C (2014) What is the risk of aluminium as a neurotoxin? Expert Rev Neurother 14(6):589–591

    Article  PubMed  CAS  Google Scholar 

  • Exley C, House E, Polwart A, Esiri MM (2012) Brain burdens of aluminum, iron, and copper and their relationships with amyloid-beta pathology in 60 human brains. J Alzheimer's Dis: JAD 31(4):725–730

    Article  CAS  Google Scholar 

  • Gao F, Zhang P, Zhang H, Zhang Y, Zhang Y, Hao Q, Zhang X (2017) Dysregulation of long noncoding RNAs in mouse testes and spermatozoa after exposure to cadmium. Biochem Biophys Res Commun 484(1):8–14

    Article  PubMed  CAS  Google Scholar 

  • Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C, Rinn JL, Lander ES, Regev A (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28(5):503–510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R (2004) Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development (Cambridge, England) 131(22):5539–5550

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson VJ, Sharma RP (2003) Aluminum disrupts the pro-inflammatory cytokine/neurotrophin balance in primary brain rotation-mediated aggregate cultures: possible role in neurodegeneration. Neurotoxicology 24(2):261–268

    Article  PubMed  CAS  Google Scholar 

  • Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimer’s Dis 2011:276393

    Google Scholar 

  • Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev 10(Suppl 1):1–269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar V, Gill KD (2014) Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 41:154–166

    Article  PubMed  CAS  Google Scholar 

  • Li XB, Zheng H, Zhang ZR, Li M, Huang ZY, Schluesener HJ, Li YY, Xu SQ (2009) Glia activation induced by peripheral administration of aluminum oxide nanoparticles in rat brains. Nanomedicine 5(4):473–479

    Article  PubMed  CAS  Google Scholar 

  • Liang RF, Li WQ, Wang XH, Zhang HF, Wang H, Wang JX, Zhang Y, Wan MT, Pan BL, Niu Q (2012) Aluminium-maltolate-induced impairment of learning, memory and hippocampal long-term potentiation in rats. Ind Health 50(5):428–436

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Xiang Y, Yang G, Zhang L, Wang H, Zhong S (2017) Transcriptomic characterization of zebrafish larvae in response to mercury exposure. Comp Biochem Physiol C Toxicol Pharmacol 192:40–49

    Article  PubMed  CAS  Google Scholar 

  • Ma N, Liu ZP, Yang DJ, Liang J, Zhu JH, Xu HB, Li FQ, Li N (2016) Risk assessment of dietary exposure to aluminium in the Chinese population, Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 33(10):1557–1562

  • Maya S, Prakash T, Madhu KD, Goli D (2016) Multifaceted effects of aluminium in neurodegenerative diseases: a review. Biomed Pharmacother 83:746–754

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Baron M, Schaper M, Knapp G, Van Thriel C (2007) Occupational aluminum exposure: evidence in support of its neurobehavioral impact. Neurotoxicology 28(6):1068–1078

    Article  PubMed  CAS  Google Scholar 

  • Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93(3):421–443

    Article  PubMed  CAS  Google Scholar 

  • Morris G, Puri BK, Frye RE (2017) The putative role of environmental aluminium in the development of chronic neuropathology in adults and children. How strong is the evidence and what could be the mechanisms involved? Metab Brain Dis 32(5):1335–1355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  PubMed  CAS  Google Scholar 

  • Pogue AI, Lukiw WJ (2016) Aluminum, the genetic apparatus of the human CNS and Alzheimer's disease (AD). Morphologie 100(329):56–64

    Article  PubMed  CAS  Google Scholar 

  • Qureshi IA, Mattick JS, Mehler MF (2010) Long non-coding RNAs in nervous system function and disease. Brain Res 1338:20–35

    Article  PubMed  CAS  Google Scholar 

  • Rola R, Mizumatsu S, Otsuka S, Morhardt DR, Noble-Haeusslein LJ, Fishman K, Potts MB, Fike JR (2006) Alterations in hippocampal neurogenesis following traumatic brain injury in mice. Exp Neurol 202(1):189–199

    Article  PubMed  CAS  Google Scholar 

  • Sharif A, Duhem-Tonnelle V, Allet C, Baroncini M, Loyens A, Kerr-Conte J, Collier F, Blond S, Ojeda SR, Junier MP, Prevot V (2009) Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brain. Glia 57(4):362–379

    Article  PubMed  Google Scholar 

  • Shimizu M, Furuya S, Shinoda Y, Mitoma J, Okamura T, Miyoshi I, Kasai N, Hirabayashi Y, Suzuki Y (2004) Functional analysis of mouse 3-phosphoglycerate dehydrogenase (Phgdh) gene promoter in developing brain. J Neurosci Res 76(5):623–632

    Article  PubMed  CAS  Google Scholar 

  • Shu Y, Zhang H, Kang T, Zhang JJ, Yang Y, Liu H, Zhang L (2013) PI3K/Akt signal pathway involved in the cognitive impairment caused by chronic cerebral hypoperfusion in rats. PLoS One 8(12):e81901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song J, Liu Y, Zhang HF, Zhang QL, Niu Q (2014) Effects of exposure to aluminum on long-term potentiation and AMPA receptor subunits in rats in vivo. Biomed Environ Sci: BES 27(2):77–84

    PubMed  CAS  Google Scholar 

  • Tian S, Gu C, Liu L, Zhu X, Zhao Y, Huang S (2015) Transcriptome profiling of Louisiana iris root and identification of genes involved in lead-stress response. Int J Mol Sci 16(12):28087–28097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034

    Article  PubMed  CAS  Google Scholar 

  • Walton JR (2012) Cognitive deterioration and associated pathology induced by chronic low-level aluminum ingestion in a translational rat model provides an explanation of Alzheimer’s disease, tests for susceptibility and avenues for treatment. Int J Alzheimer’s Dis 2012:914947

    CAS  Google Scholar 

  • Wang H, Ye M, Yu L, Wang J, Guo Y, Lei W, Yang J (2015) Hippocampal neuronal cyclooxygenase-2 downstream signaling imbalance in a rat model of chronic aluminium gluconate administration. Behav Brain Funct 11:–8

  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM, Arnold IM, Momoli F, Krewski D (2014) Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit Rev Toxicol 44(Suppl 4):1–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, B., Xia, Z. A., Zhong, B., Xiong, X., Sheng, C., Wang, Y., Gong, W., Cao, Y., Wang, Z., Peng, W.,(2016) Distinct hippocampal expression profiles of long non-coding RNAs in an Alzheimer’s disease model. Molecular neurobiology

  • Zhang L, Jin C, Lu X, Yang J, Wu S, Liu Q, Chen R, Bai C, Zhang D, Zheng L, Du Y, Cai Y (2014) Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats. Toxicology 323:95–108

    Article  PubMed  CAS  Google Scholar 

  • Zhang QL, Boscolo P, Niu PY, Wang F, Shi YT, Zhang L, Wang LP, Wang J, Di Gioacchino M, Conti P, Li QY, Niu Q (2008) How do rat cortical cells cultured with aluminum die: necrosis or apoptosis? Int J Immunopathol Pharmacol 21(1):107–115

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Lu W, Han M, Li H, Luo H, Li W, Luo W, Lin Z (2016a) Biphasic effects of copper on rat learning and memory in the Morris water maze. Ann Clin Lab Science 46(4):346–352

    CAS  Google Scholar 

  • Zhang S, Qin C, Cao G, Xin W, Feng C, Zhang W (2016b) Systematic analysis of long noncoding RNAs in the senescence-accelerated mouse prone 8 brain using RNA sequencing. Mol Ther- Nucleic Acids 5:e343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao S, Chai X, Frotscher M (2007) Balance between neurogenesis and gliogenesis in the adult hippocampus: role for reelin. Dev Neurosc 29(1-2):84–90

    Article  CAS  Google Scholar 

  • Zhou Z, Liu H, Wang C, Lu Q, Huang Q, Zheng C, Lei Y (2015) Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology. Scientific reports 5:15293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

RNA-seq and bioinformatics analysis were performed by Novogene Company. This research was supported by the National Natural Science Foundation of China (grant no. 81430078). We are grateful to Sarah Williams, PhD, from Liwen Bianji, Edanz Group China, for editing the English text of the draft of this manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (grant no. 81430078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Niu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All the procedures involving animals were in accordance with the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health (NIH Publications No. 8023, revised 1978). This study was approved by the Animal Care and Use Committee of Shanxi Medical University. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Highlights

• Sub-chronical low level Al exposure impairs rat spatial learning and memory

• Hippocampus lncRNA and mRNA profiles affected by Al were identified

• Candidate genes and signaling pathways in Al neurotoxicity were screened

• Glial cells and associated genes may be involved in Al neurotoxicity

Electronic Supplementary Material

ESM 1

(PDF 492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, H., Pan, B. et al. Transcriptome-Wide Identification of Differentially Expressed Genes and Long Non-coding RNAs in Aluminum-Treated Rat Hippocampus. Neurotox Res 34, 220–232 (2018). https://doi.org/10.1007/s12640-018-9879-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-018-9879-1

Keywords

Navigation