Advertisement

Neurotoxicity Research

, Volume 34, Issue 1, pp 109–120 | Cite as

Autophagic Modulation by Trehalose Reduces Accumulation of TDP-43 in a Cell Model of Amyotrophic Lateral Sclerosis via TFEB Activation

  • Ying Wang
  • Feng-Tao Liu
  • Yi-Xuan Wang
  • Rong-Yuan Guan
  • Chen Chen
  • Da-Ke Li
  • Lu-Lu Bu
  • Jie Song
  • Yu-Jie Yang
  • Yi Dong
  • Yan Chen
  • Jian Wang
ORIGINAL ARTICLE

Abstract

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease characterized by the formation of protein inclusion and progressive loss of motor neurons, finally leading to muscle weakness and respiratory failure. So far, the effective drugs for ALS are yet to be developed. Impairment of transcriptional activator transcription factor EB (TFEB) has been demonstrated as a key element in the pathogenesis of ALS. Trehalose is an mechanistic target of rapamycin-independent inducer for autophagy, which showed autophagic activation and neuroprotective effect in a variety of neurodegenerative diseases. The mechanism for trehalose-induced autophagy enhancement is not clear, and its therapeutic effect on TAR DNA-binding protein-43 (TDP-43) proteinopathies has been poorly investigated. Here we examined the effect of trehalose on TDP-43 clearance in a cell culture model and identified that trehalose treatment significantly reduced TDP-43 accumulation in vitro through modulation of the autophagic degradation pathway. Further studies revealed that activation of TFEB induced by trehalose was responsible for the enhancement of autophagy and clearance of TDP-43 level. These results gave us the notion that TFEB is a central regular in trehalose-mediated autophagic clearance of TDP-43 aggregates, representing an important step forward in the treatment of TDP-43 related ALS diseases.

Keywords

Amyotrophic lateral sclerosis Autophagy TDP-43 TFEB Trehalose 

Notes

Acknowledgments

This work was supported by grants to Jian Wang from the National Natural Science Foundation of China (81571232 and 81371413) and project (2016YFC1306500) from the Ministry of Science and Technology of China, and grants to Feng-Tao Liu from Scientific Research Project (2016QD01) from Huashan Hospital affiliated to Fudan University. The authors wish to express their gratitude to Professor Jin Xu and his laboratory members for their guidance and technical assistance.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351(3):602–611.  https://doi.org/10.1016/j.bbrc.2006.10.093 CrossRefPubMedGoogle Scholar
  2. Arnold ES, Ling SC, Huelga SC, Lagier-Tourenne C, Polymenidou M, Ditsworth D, Kordasiewicz HB, McAlonis-Downes M, Platoshyn O, Parone PA, Da Cruz S, Clutario KM, Swing D, Tessarollo L, Marsala M, Shaw CE, Yeo GW, Cleveland DW (2013) ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci U S A 110(8):E736–E745.  https://doi.org/10.1073/pnas.1222809110 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barreca D, Lagana G, Ficarra S, Tellone E, Leuzzi U, Magazu S, Galtieri A, Bellocco E (2010) Anti-aggregation properties of trehalose on heat-induced secondary structure and conformation changes of bovine serum albumin. Biophys Chem 147(3):146–152.  https://doi.org/10.1016/j.bpc.2010.01.010 CrossRefPubMedGoogle Scholar
  4. Chang CF, Lee YC, Lee KH, Lin HC, Chen CL, Shen CJ, Huang CC (2016) Therapeutic effect of berberine on TDP-43-related pathogenesis in FTLD and ALS. J Biomed Sci 23(1):72.  https://doi.org/10.1186/s12929-016-0290-z CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen Y, Liu H, Guan Y, Wang Q, Zhou F, Jie L, Ju J, Pu L, Du H, Wang X (2015) The altered autophagy mediated by TFEB in animal and cell models of amyotrophic lateral sclerosis. Am J Transl Res 7(9):1574–1587PubMedPubMedCentralGoogle Scholar
  6. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc Natl Acad Sci U S A 110(19):E1817–E1826.  https://doi.org/10.1073/pnas.1305623110 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 30(37):12535–12544.  https://doi.org/10.1523/jneurosci.1920-10.2010 CrossRefPubMedGoogle Scholar
  8. Di Meco A, Li JG, Blass BE, Abou-Gharbia M, Lauretti E, Pratico D (2017) 12/15-Lipoxygenase inhibition reverses cognitive impairment, brain amyloidosis, and tau pathology by stimulating autophagy in aged triple transgenic mice. Biol Psychiatry 81(2):92–100.  https://doi.org/10.1016/j.biopsych.2016.05.023 CrossRefPubMedGoogle Scholar
  9. Dimasi P, Quintiero A, Shelkovnikova TA, Buchman VL (2017) Modulation of p-eIF2α cellular levels and stress granule assembly/disassembly by trehalose. Sci Rep 7:44088.  https://doi.org/10.1038/srep44088 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ghavami S, Sharma P, Yeganeh B, Ojo OO, Jha A, Mutawe MM, Kashani HH, Los MJ, Klonisch T, Unruh H, Halayko AJ (2014) Airway mesenchymal cell death by mevalonate cascade inhibition: integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins. Biochim Biophys Acta 1843(7):1259–1271.  https://doi.org/10.1016/j.bbamcr.2014.03.006 CrossRefPubMedGoogle Scholar
  11. Harris H, Rubinsztein DC (2012) Control of autophagy as a therapy for neurodegenerative disease. Nat Rev Neurol 8(2):108–117CrossRefGoogle Scholar
  12. He Q, Wang Y, Lin W, Zhang Q, Zhao J, Liu FT, Tang YL, Xiao BG, Wang J (2014) Trehalose alleviates PC12 neuronal death mediated by lipopolysaccharide-stimulated BV-2 cells via inhibiting nuclear transcription factor NF-kappaB and AP-1 activation. Neurotox Res 26(4):430–439.  https://doi.org/10.1007/s12640-014-9487-7 CrossRefPubMedGoogle Scholar
  13. Holler CJ, Taylor G, McEachin ZT, Deng Q, Watkins WJ, Hudson K, Easley CA, Hu WT, Hales CM, Rossoll W, Bassell GJ, Kukar T (2016) Trehalose upregulates progranulin expression in human and mouse models of GRN haploinsufficiency: a novel therapeutic lead to treat frontotemporal dementia. Mol Neurodegener 11(1):46.  https://doi.org/10.1186/s13024-016-0114-3 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jangamreddy JR, Ghavami S, Grabarek J, Kratz G, Wiechec E, Fredriksson BA, Rao Pariti RK, Cieslar-Pobuda A, Panigrahi S, Los MJ (2013) Salinomycin induces activation of autophagy, mitophagy and affects mitochondrial polarity: differences between primary and cancer cells. Biochim Biophys Acta 1833(9):2057–2069.  https://doi.org/10.1016/j.bbamcr.2013.04.011 CrossRefPubMedGoogle Scholar
  15. Kim C, Rockenstein E, Spencer B, Kim HK, Adame A, Trejo M, Stafa K, Lee HJ, Lee SJ, Masliah E (2015) Antagonizing neuronal toll-like receptor 2 prevents Synucleinopathy by activating autophagy. Cell Rep 13(4):771–782.  https://doi.org/10.1016/j.celrep.2015.09.044 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3(5):452–460.  https://doi.org/10.4161/auto.4451 CrossRefPubMedGoogle Scholar
  17. Leblond CS, Kaneb HM, Dion PA, Rouleau GA (2014) Dissection of genetic factors associated with amyotrophic lateral sclerosis. Exp Neurol 262(Pt B):91–101.  https://doi.org/10.1016/j.expneurol.2014.04.013 CrossRefPubMedGoogle Scholar
  18. Lee EB, Lee VMY, Trojanowski JQ (2012) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13(1):38–50CrossRefGoogle Scholar
  19. Li Y, Guo Y, Wang X, Yu X, Duan W, Hong K, Wang J, Han H, Li C (2015) Trehalose decreases mutant SOD1 expression and alleviates motor deficiency in early but not end-stage amyotrophic lateral sclerosis in a SOD1-G93A mouse model. Neuroscience 298:12–25.  https://doi.org/10.1016/j.neuroscience.2015.03.061 CrossRefPubMedGoogle Scholar
  20. Maekawa S, Leigh PN, King A, Jones E, Steele JC, Bodi I, Shaw CE, Hortobagyi T, Al-Sarraj S (2009) TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology 29(6):672–683.  https://doi.org/10.1111/j.1440-1789.2009.01029.x CrossRefPubMedGoogle Scholar
  21. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326.  https://doi.org/10.1016/j.cell.2010.01.028 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Nalbandian A, Llewellyn KJ, Nguyen C, Yazdi PG, Kimonis VE (2015) Rapamycin and chloroquine: the in vitro and in vivo effects of autophagy-modifying drugs show promising results in valosin containing protein multisystem proteinopathy. PLoS One 10(4):e0122888.  https://doi.org/10.1371/journal.pone.0122888 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science (New York, NY) 314(5796):130–133.  https://doi.org/10.1126/science.1134108 CrossRefGoogle Scholar
  24. Oliver AE, Jamil K, Crowe JH, Tablin F (2004) Loading human mesenchymal stem cells with trehalose by fluid-phase endocytosis. Cell Preserv Technol 2(1):35–49.  https://doi.org/10.1089/153834404322708745 CrossRefGoogle Scholar
  25. Pagliassotti MJ, Estrada AL, Hudson WM, Wei Y, Wang D, Seals DR, Zigler ML, LaRocca TJ (2017) Trehalose supplementation reduces hepatic endoplasmic reticulum stress and inflammatory signaling in old mice. J Nutr Biochem 45:15–23.  https://doi.org/10.1016/j.jnutbio.2017.02.022 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Pallet N, Legendre C (2013) Adverse events associated with mTOR inhibitors. Expert Opin Drug Saf 12(2):177–186.  https://doi.org/10.1517/14740338.2013.752814 CrossRefPubMedGoogle Scholar
  27. Palmieri M, Pal R, Nelvagal HR, Lotfi P, Stinnett GR, Seymour ML, Chaudhury A, Bajaj L, Bondar VV, Bremner L, Saleem U, Tse DY, Sanagasetti D, Wu SM, Neilson JR, Pereira FA, Pautler RG, Rodney GG, Cooper JD, Sardiello M (2017) mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat Commun 8:14338.  https://doi.org/10.1038/ncomms14338 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Parr C, Carzaniga R, Gentleman SM, Van Leuven F, Walter J, Sastre M (2012) Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-beta precursor protein. Mol Cell Biol 32(21):4410–4418.  https://doi.org/10.1128/mcb.00930-12 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Petrov D, Mansfield C, Moussy A, Hermine O (2017) ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Front Aging Neurosci 9:68.  https://doi.org/10.3389/fnagi.2017.00068 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Polito VA, Li H, Martini-Stoica H, Wang B, Yang L, Xu Y, Swartzlander DB, Palmieri M, di Ronza A, Lee VM, Sardiello M, Ballabio A, Zheng H (2014) Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med 6(9):1142–1160.  https://doi.org/10.15252/emmm.201303671 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11(9):1107–1117.  https://doi.org/10.1093/hmg/11.9.1107 CrossRefPubMedGoogle Scholar
  32. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595.  https://doi.org/10.1038/ng1362 CrossRefPubMedGoogle Scholar
  33. Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek AP, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem tToxicol 40(7):871–898.  https://doi.org/10.1016/S0278-6915(02)00011-X CrossRefGoogle Scholar
  34. Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, Walther TC, Ferguson SM (2012) The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 5(228):ra42.  https://doi.org/10.1126/scisignal.2002790 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rodriguez-Arribas M, Yakhine-Diop SM, Gonzalez-Polo RA, Niso-Santano M, Fuentes JM (2017) Turnover of lipidated LC3 and autophagic cargoes in mammalian cells. Methods Enzymol 587:55–70.  https://doi.org/10.1016/bs.mie.2016.09.053 CrossRefPubMedGoogle Scholar
  36. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS, Banfi S, Parenti G, Cattaneo E, Ballabio A (2009) A gene network regulating lysosomal biogenesis and function. Science (New York, NY) 325:473–477.  https://doi.org/10.1126/science.1174447 CrossRefGoogle Scholar
  37. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282(8):5641–5652.  https://doi.org/10.1074/jbc.M609532200 CrossRefPubMedGoogle Scholar
  38. Scotter EL, Vance C, Nishimura AL, Lee YB, Chen HJ, Urwin H, Sardone V, Mitchell JC, Rogelj B, Rubinsztein DC, Shaw CE (2014) Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species. J Cell Sci 127(6):1263–1278.  https://doi.org/10.1242/jcs.140087 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science (New York, NY) 332(6036):1429–1433.  https://doi.org/10.1126/science.1204592 CrossRefGoogle Scholar
  40. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, Facchinetti V, Sabatini DM, Ballabio A (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31(5):1095–1108.  https://doi.org/10.1038/emboj.2012.32 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Settembre C, Fraldi A, Medina DL, Ballabio A (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14(5):283–296.  https://doi.org/10.1038/nrm3565 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shin HJ, Kim H, Oh S, Lee JG, Kee M, Ko HJ, Kweon MN, Won KJ, Baek SH (2016) AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature 534(7608):553–557.  https://doi.org/10.1038/nature18014 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, Lazarowski ER, Damian VA, Masliah E, La Spada AR (2012) PGC-1alpha rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med 4(142):142ra197.  https://doi.org/10.1126/scitranslmed.3003799 CrossRefGoogle Scholar
  44. Uchida K, Unuma K, Funakoshi T, Aki T, Uemura K (2014) Activation of master autophagy regulator TFEB during systemic LPS administration in the cornea. J Toxicol Pathol 27(2):153–158.  https://doi.org/10.1293/tox.2014-0004 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Urushitani M, Sato T, Bamba H, Hisa Y, Tooyama I (2010) Synergistic effect between proteasome and autophagosome in the clearance of polyubiquitinated TDP-43. J Neurosci Res 88:784–797.  https://doi.org/10.1002/jnr.22243 PubMedCrossRefGoogle Scholar
  46. Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science (New York, NY) 323(5918):1208–1211.  https://doi.org/10.1126/science.1165942 CrossRefGoogle Scholar
  47. Vodicka P, Chase K, Iuliano M, Tousley A, Valentine DT, Sapp E, Kegel-Gleason KB, Sena-Esteves M, Aronin N, DiFiglia M (2016) Autophagy activation by transcription factor EB (TFEB) in striatum of HDQ175/Q7 mice. J Huntington's Dis 5(3):249–260.  https://doi.org/10.3233/jhd-160211 CrossRefGoogle Scholar
  48. Wang Q, Ren J (2016) mTOR-independent autophagy inducer trehalose rescues against insulin resistance-induced myocardial contractile anomalies: role of p38 MAPK and Foxo1. Pharmacol Res 111:357–373.  https://doi.org/10.1016/j.phrs.2016.06.024 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wang X, Fan H, Ying Z, Li B, Wang H, Wang G (2010) Degradation of TDP-43 and its pathogenic form by autophagy and the ubiquitin-proteasome system. Neurosci Lett 469(1):112–116.  https://doi.org/10.1016/j.neulet.2009.11.055 CrossRefPubMedGoogle Scholar
  50. Wang H, Wang R, Xu S, Lakshmana MK (2016) Transcription factor EB is selectively reduced in the nuclear fractions of Alzheimer’s and amyotrophic lateral sclerosis brains. Neurosci J 2016:1–8.  https://doi.org/10.1155/2016/4732837 CrossRefGoogle Scholar
  51. Wolkers WF, Walker NJ, Tablin F, Crowe JH (2001) Human platelets loaded with trehalose survive freeze-drying. Cryobiology 42(2):79–87.  https://doi.org/10.1006/cryo.2001.2306 CrossRefPubMedGoogle Scholar
  52. Xia Q, Wang H, Hao Z, Fu C, Hu Q, Gao F, Ren H, Chen D, Han J, Ying Z, Wang G (2016) TDP-43 loss of function increases TFEB activity and blocks autophagosome-lysosome fusion. EMBO J 35:121–142.  https://doi.org/10.15252/embj.201591998 CrossRefPubMedGoogle Scholar
  53. Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, Gonzales E, Burchett JM, Schuler DR, Cirrito JR, Diwan A, Lee JM (2014) Enhancing astrocytic lysosome biogenesis facilitates Abeta clearance and attenuates amyloid plaque pathogenesis. J Neurosci 34(29):9607–9620.  https://doi.org/10.1523/jneurosci.3788-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yu WB, Jiang T, Lan DM, Lu JH, Yue ZY, Wang J, Zhou P (2012) Trehalose inhibits fibrillation of A53T mutant alpha-synuclein and disaggregates existing fibrils. Arch Biochem Biophys 523(2):144–150.  https://doi.org/10.1016/j.abb.2012.04.021 CrossRefPubMedGoogle Scholar
  55. Zhang X, Chen S, Song L, Tang Y, Shen Y, Jia L, Le W (2014) MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy 10(4):588–602.  https://doi.org/10.4161/auto.27710 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
  2. 2.Department of Neurology, Shanghai East HospitalTongji University School of MedicineShanghaiChina

Personalised recommendations