Advertisement

Neurotoxicity Research

, Volume 34, Issue 1, pp 79–92 | Cite as

Temporal Pattern and Crosstalk of Necroptosis Markers with Autophagy and Apoptosis Associated Proteins in Ischemic Hippocampus

  • Fari Ryan
  • Fariba Khodagholi
  • Leila Dargahi
  • Dariush Minai-Tehrani
  • Abolhassan Ahmadiani
ORIGINAL ARTICLE
  • 133 Downloads

Abstract

Necroptosis, a novel type of programmed cell death, has been recently implicated as a possible mechanism for cerebral ischemia-reperfusion (I/R) injury. We herein studied time-dependent changes of necroptosis markers along with apoptosis- and autophagy-associated proteins in rat hippocampus at 1, 3, 6, 12, 24, and 48 h after global cerebral I/R injury. Furthermore, to determine the cross talk between autophagy and necroptosis, we examined the effects of pretreatment with bafilomycin-A1 (Baf-A1), as a late-stage autophagy inhibitor, on necroptosis. Highest levels of receptor-interacting protein 1 and 3 (RIP1 and RIP3), as key mediators of necroptosis, were observed at 24 h after reperfusion. Alongside, activity of glutamate dehydrogenase (GLUD1), downstream enzyme of RIP3, was increased. Peak time of necroptosis was subsequent to caspase-3-dependent cell death that peaked at 12 h of reperfusion but concurrent with autophagy. Administration of Baf-A1 could attenuate necroptosis, verified by decrease in RIP1 and RIP3 protein levels, as well as GLUD1 activity. However, there was no significant change in caspase-3-dependent cell death. Taken together, our results highlight that global cerebral I/R activates necroptosis that could be triggered by autophagy and interacts reversely with caspase-3-dependent apoptosis.

Keywords

Necroptosis Autophagy Apoptosis Global cerebral ischemia-reperfusion Bafilomycin-A1 Neural cell death 

Notes

Acknowledgements

This work is part of Ph.D. thesis carried out by the first author at Shahid Beheshti University of Medical Sciences.

Compliance with Ethical Standards

All experiments used in this study were performed in accordance with Ethics Committee of Shahid Beheshti University of Medical Sciences in accordance with the international guidelines for animal experiments (NIH publication No. 80-23, revised 1996).

References

  1. Anderson MF, Sims NR (1999) Mitochondrial respiratory function and cell death in focal cerebral ischemia. J Neurochem 73(3):1189–1199CrossRefPubMedGoogle Scholar
  2. Back T, Zhao W, Ginsberg MD (1995) Three-dimensional image analysis of brain glucose metabolism-blood flow uncoupling and its electrophysiological correlates in the acute ischemic penumbra following middle cerebral artery occlusion. J Cereb Blood Flow Metab 15:566–577CrossRefPubMedGoogle Scholar
  3. Bell BD et al (2008) FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc Natl Acad Sci U S A 105:16677–16682.  https://doi.org/10.1073/pnas.0808597105 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25(3):1025–1040.  https://doi.org/10.1128/mcb.25.3.1025-1040.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2):248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  6. Brahma MK, Dohare P, Varma S, Rath SK, Garg P, Biswal PK, Chowdhury PD, Ray M (2009) The neuronal apoptotic death in global cerebral ischemia in gerbil: important role for sodium channel modulator. J Neurosci Res 87(6):1400–1411.  https://doi.org/10.1002/jnr.21960 CrossRefPubMedGoogle Scholar
  7. Chen J, Graham SH, Nakayama M, Zhu RL, Jin K, Stetler RA, Simon RP (1997) Apoptosis repressor genes Bcl-2 and Bcl-x-long are expressed in the rat brain following global ischemia. J Cereb Blood Flow Metab 17(1):2–10.  https://doi.org/10.1097/00004647-199701000-00002 CrossRefPubMedGoogle Scholar
  8. Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, Simon RP (1998) Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 18(13):4914–4928CrossRefPubMedGoogle Scholar
  9. Chen J, Zhu RL, Nakayama M, Kawaguchi K, Jin K, Stetler RA, Simon RP, Graham SH (1996) Expression of the apoptosis-effector gene, Bax, is up-regulated in vulnerable hippocampal CA1 neurons following global ischemia. J Neurochem 67(1):64–71CrossRefPubMedGoogle Scholar
  10. Chen SY, Chiu LY, Maa MC, Wang JS, Chien CL, Lin WW (2011) zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation. Autophagy 7(2):217–228.  https://doi.org/10.4161/auto.7.2.14212 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chu CT (2006) Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol 65(5):423–432.  https://doi.org/10.1097/01.jnen.0000229233.75253.be CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chu K, Yin B, Wang J, Peng G, Liang H, Xu Z, Du Y, Fang M, Xia Q, Luo B (2012) Inhibition of P2X7 receptor ameliorates transient global cerebral ischemia/reperfusion injury via modulating inflammatory responses in the rat hippocampus. J Neuroinflammation 9(1):69.  https://doi.org/10.1186/1742-2094-9-69 PubMedPubMedCentralGoogle Scholar
  13. Colbourne F, Sutherland GR, Auer RN (1999) Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J Neurosci 19(11):4200–4210CrossRefPubMedGoogle Scholar
  14. Cui D, Shang H, Zhang X, Jiang W, Jia X (2016) Cardiac arrest triggers hippocampal neuronal death through autophagic and apoptotic pathways. Sci Rep 6(1):27642.  https://doi.org/10.1038/srep27642 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cui DR, Wang L, Jiang W, Qi AH, Zhou QH, Zhang XL (2013) Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-kappaB/p53 signaling pathway. Neuroscience 246:117–132.  https://doi.org/10.1016/j.neuroscience.2013.04.054 CrossRefPubMedGoogle Scholar
  16. de Souza Pagnussat A, Faccioni-Heuser MC, Netto CA, Achaval M (2007) An ultrastructural study of cell death in the CA1 pyramidal field of the hippocapmus in rats submitted to transient global ischemia followed by reperfusion. J Anat 211(5):589–599.  https://doi.org/10.1111/j.1469-7580.2007.00802.x CrossRefPubMedCentralGoogle Scholar
  17. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119.  https://doi.org/10.1038/nchembio711 CrossRefPubMedGoogle Scholar
  18. Deshpande J, Bergstedt K, Linden T, Kalimo H, Wieloch T (1992) Ultrastructural changes in the hippocampal CA1 region following transient cerebral ischemia: evidence against programmed cell death. Exp Brain Res 88(1):91–105.  https://doi.org/10.1007/BF02259131 CrossRefPubMedGoogle Scholar
  19. Dickens LS, Powley IR, Hughes MA, MacFarlane M (2012) The ‘complexities’ of life and death: death receptor signalling platforms. Exp Cell Res 318(11):1269–1277.  https://doi.org/10.1016/j.yexcr.2012.04.005 CrossRefPubMedGoogle Scholar
  20. Diler AS, Ziylan YZ, Uzum G, Lefauconnier JM, Seylaz J, Pinard E (2002) Passage of spermidine across the blood-brain barrier in short recirculation periods following global cerebral ischemia: effects of mild hyperthermia. Neurosci Res 43(4):335–342.  https://doi.org/10.1016/S0168-0102(02)00059-7 CrossRefPubMedGoogle Scholar
  21. Doherty D (1970) [119] l-glutamate dehydrogenases (yeast). In: Methods in enzymology. Part a. Academic Press, 17:850-856. doi: https://doi.org/10.1016/0076-6879(71)17294-1
  22. Eltzschig HK, Eckle T (2011) Ischemia and reperfusion—from mechanism to translation. Nat Med 17(11):1391–1401.  https://doi.org/10.1038/nm.2507 CrossRefPubMedGoogle Scholar
  23. Feng S, Yang Y, Mei Y, Ma L, de Zhu, Hoti N, Castanares M, Wu M (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19(10):2056–2067.  https://doi.org/10.1016/j.cellsig.2007.05.016 CrossRefPubMedGoogle Scholar
  24. Gao C, Cai Y, Zhang X, Huang H, Wang J, Wang Y, Tong X, Wang J, Wu J (2015) Ischemic preconditioning mediates neuroprotection against ischemia in mouse hippocampal CA1 neurons by inducing autophagy. PLoS One 10(9):e0137146.  https://doi.org/10.1371/journal.pone.0137146 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Giampietri C, Starace D (2014) Necroptosis: molecular signalling and translational implications 2014:490275 doi: https://doi.org/10.1155/2014/490275
  26. Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23(6):1625–1637.  https://doi.org/10.1096/fj.08-111005 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Han W, Xie J, Li L, Liu Z, Hu X (2009) Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis. Apoptosis 14(5):674–686.  https://doi.org/10.1007/s10495-009-0334-x CrossRefPubMedGoogle Scholar
  28. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889.  https://doi.org/10.1038/nature04724 CrossRefPubMedGoogle Scholar
  29. Harukuni I, Bhardwaj A (2006) Mechanisms of brain injury after global cerebral ischemia. Neurol Clin 24(1):1–21.  https://doi.org/10.1016/j.ncl.2005.10.004 CrossRefPubMedGoogle Scholar
  30. Hossmann KA (1998a) Experimental models for the investigation of brain ischemia. Cardiovasc Res 39(1):106–120.  https://doi.org/10.1016/S0008-6363(98)00075-3 CrossRefPubMedGoogle Scholar
  31. Hossmann KA (1998b) Thresholds of ischemic injury. In: Ginsberg MD, Bogousslavsky J. (Eds.) (ed) In: Cerebrovascular disease. Pathophysiology, diagnosis, and treatment, 1. Blackwell Science, Malden, pp 193–204Google Scholar
  32. Jover T, Tanaka H, Calderone A, Oguro K, Bennett MV, Etgen AM, Zukin RS (2002) Estrogen protects against global ischemia-induced neuronal death and prevents activation of apoptotic signaling cascades in the hippocampal CA1. J Neurosci 22(6):2115–2124CrossRefPubMedGoogle Scholar
  33. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728.  https://doi.org/10.1093/emboj/19.21.5720 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kaiser WJ et al (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288:31268–31279.  https://doi.org/10.1074/jbc.M113.462341 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T, Mocarski ES (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471(7338):368–372.  https://doi.org/10.1038/nature09857 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317.  https://doi.org/10.1016/b978-0-12-394309-5.00006-7 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Khan MJ, Rizwan Alam M, Waldeck-Weiermair M, Karsten F, Groschner L, Riederer M, Hallström S, Rockenfeller P, Konya V, Heinemann A, Madeo F, Graier WF, Malli R (2012) Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells. J Biol Chem 287(25):21110–21120.  https://doi.org/10.1074/jbc.M111.319129 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884.  https://doi.org/10.1038/nature04723 CrossRefPubMedGoogle Scholar
  39. Lalaoui N, Lindqvist LM, Sandow JJ, Ekert PG (2015) The molecular relationships between apoptosis, autophagy and necroptosis. Semin Cell Dev Biol 39:63–69.  https://doi.org/10.1016/j.semcdb.2015.02.003 CrossRefPubMedGoogle Scholar
  40. Lin CY, Chang TW, Hsieh WH, Hung MC, Lin IH, Lai SC, Tzeng YJ (2016) Simultaneous induction of apoptosis and necroptosis by Tanshinone IIA in human hepatocellular carcinoma HepG2 cells. Cell Death Discov 2:16065.  https://doi.org/10.1038/cddiscovery.2016.65 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lin Y, Devin A, Rodriguez Y, Liu ZG (1999) Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 13:2514–2526CrossRefPubMedPubMedCentralGoogle Scholar
  42. Liu X, Zhang C, Zhang C, Li J, Guo W, Yan D, Yang C, Zhao J, Xia T, Wang Y, Xu R, Wu X, Shi J (2016) Heat shock protein 70 inhibits cardiomyocyte necroptosis through repressing autophagy in myocardial ischemia/reperfusion injury. In Vitro Cellular & Developmental Biology—Animal 52(6):690–698.  https://doi.org/10.1007/s11626-016-0039-8 CrossRefGoogle Scholar
  43. McBean DE, Kelly PA (1998) Rodent models of global cerebral ischemia: a comparison of two-vessel occlusion and four-vessel occlusion. Gen Pharmacol 30(4):431–434.  https://doi.org/10.1016/S0306-3623(97)00284-X CrossRefPubMedGoogle Scholar
  44. McComb S et al (2016) Activation of concurrent apoptosis and necroptosis by SMAC mimetics for the treatment of refractory and relapsed ALL. Sci Trans Med 8:339ra370CrossRefGoogle Scholar
  45. Memezawa H, Smith ML, Siesjo BK (1992) Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 23(4):552–559.  https://doi.org/10.1161/01.STR.23.4.552 CrossRefPubMedGoogle Scholar
  46. Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873.  https://doi.org/10.1101/gad.1599207 CrossRefPubMedGoogle Scholar
  47. Mohagheghi F, Ahmadiani A, Rahmani B, Moradi F, Romond N, Khalaj L (2013a) Gemfibrozil pretreatment resulted in a sexually dimorphic outcome in the rat models of global cerebral ischemia-reperfusion via modulation of mitochondrial pro-survival and apoptotic cell death factors as well as MAPKs. J Mol Neurosci 50(3):379–393.  https://doi.org/10.1007/s12031-012-9932-0 CrossRefPubMedGoogle Scholar
  48. Mohagheghi F, Khalaj L, Ahmadiani A, Rahmani B (2013b) Gemfibrozil pretreatment affecting antioxidant defense system and inflammatory, but not Nrf-2 signaling pathways resulted in female neuroprotection and male neurotoxicity in the rat models of global cerebral ischemia-reperfusion. Neurotox Res 23(3):225–237.  https://doi.org/10.1007/s12640-012-9338-3 CrossRefPubMedGoogle Scholar
  49. Nakka VP, Gusain A, Mehta SL, Raghubir R (2008) Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 37(1):7–38.  https://doi.org/10.1007/s12035-007-8013-9 CrossRefPubMedGoogle Scholar
  50. Ni B, Wu X, Su Y, Stephenson D, Smalstig EB, Clemens J, Paul SM (1998) Transient global forebrain ischemia induces a prolonged expression of the caspase-3 mRNA in rat hippocampal CA1 pyramidal neurons. J Cereb Blood Flow Metab 18(3):248–256.  https://doi.org/10.1097/00004647-199803000-00003 CrossRefPubMedGoogle Scholar
  51. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833(12):3448–3459.  https://doi.org/10.1016/j.bbamcr.2013.06.001 CrossRefPubMedGoogle Scholar
  52. Nikseresht S, Khodagholi F, Nategh M, Dargahi L (2015) RIP1 inhibition rescues from LPS-induced RIP3-mediated programmed cell death, distributed energy metabolism and spatial memory impairment. J Mol Neurosci 57(2):219–230.  https://doi.org/10.1007/s12031-015-0609-3 CrossRefPubMedGoogle Scholar
  53. Nitatori T, Sato N, Waguri S, Karasawa Y, Araki H, Shibanai K, Kominami E, Uchiyama Y (1995) Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J Neurosci 15(2):1001–1011CrossRefPubMedGoogle Scholar
  54. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471(7338):363–367.  https://doi.org/10.1038/nature09852 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74(4):609–619.  https://doi.org/10.1016/0092-8674(93)90509-O CrossRefPubMedGoogle Scholar
  56. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier Academic Press, AmsterdamGoogle Scholar
  57. Pulsinelli WA (1985) Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Res 63:29–37.  https://doi.org/10.1016/s0079-6123(08)61973-1 CrossRefPubMedGoogle Scholar
  58. Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10(3):267–272.  https://doi.org/10.1161/01.STR.10.3.267 CrossRefPubMedGoogle Scholar
  59. Richmond TS (1997) Cerebral resuscitation after global brain ischemia: linking research to practice. AACN Clin Issues 8(2):171–181.  https://doi.org/10.1097/00044067-199705000-00002 CrossRefPubMedGoogle Scholar
  60. Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA (1999) Apoptosis: definition, mechanisms, and relevance to disease. Am J Med 107(5):489–506.  https://doi.org/10.1016/S0002-9343(99)00259-4 CrossRefPubMedGoogle Scholar
  61. Sarkar S, Ravikumar B, Rubinsztein DC (2009) Autophagic clearance of aggregate-prone proteins associated with neurodegeneration. Methods Enzymol 453:83–110.  https://doi.org/10.1016/s0076-6879(08)04005-6 CrossRefPubMedGoogle Scholar
  62. Schenk B, Fulda S (2015) Reactive oxygen species regulate Smac mimetic/TNFalpha-induced necroptotic signaling and cell death. Oncogene 34(47):5796–5806.  https://doi.org/10.1038/onc.2015.35 CrossRefPubMedGoogle Scholar
  63. Shacka JJ, Klocke BJ, Shibata M, Uchiyama Y, Datta G, Schmidt RE, Roth KA (2006) Bafilomycin A1 inhibits chloroquine-induced death of cerebellar granule neurons. Mol Pharmacol 69(4):1125–1136.  https://doi.org/10.1124/mol.105.018408 CrossRefPubMedGoogle Scholar
  64. Shaerzadeh F, Motamedi F, Khodagholi F (2014) Inhibition of akt phosphorylation diminishes mitochondrial biogenesis regulators, tricarboxylic acid cycle activity and exacerbates recognition memory deficit in rat model of Alzheimer’s disease. Cell Mol Neurobiol 34(8):1223–1233.  https://doi.org/10.1007/s10571-014-0099-9 CrossRefPubMedGoogle Scholar
  65. Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18(3):250–260.  https://doi.org/10.1111/j.1755-5949.2012.00295.x CrossRefPubMedGoogle Scholar
  66. Small DL, Buchan AM (2000) Animal models. Br Med Bull 56(2):307–317.  https://doi.org/10.1258/0007142001903238 CrossRefPubMedGoogle Scholar
  67. Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol (Clifton, NJ) 445:77–88.  https://doi.org/10.1007/978-1-59745-157-4_4 CrossRefGoogle Scholar
  68. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15(2):135–147.  https://doi.org/10.1038/nrm3737 CrossRefGoogle Scholar
  69. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714.  https://doi.org/10.1038/nrm2970 CrossRefPubMedGoogle Scholar
  70. Wang JY, Xia Q, Chu KT, Pan J, Sun LN, Zeng B, Zhu YJ, Wang Q, Wang K, Luo BY (2011) Severe global cerebral ischemia-induced programmed necrosis of hippocampal CA1 neurons in rat is prevented by 3-methyladenine: a widely used inhibitor of autophagy. J Neuropathol Exp Neurol 70(4):314–322.  https://doi.org/10.1097/NEN.0b013e31821352bd CrossRefPubMedGoogle Scholar
  71. Wardlaw JM, Sandercock PA, Berge E (2003) Thrombolytic therapy with recombinant tissue plasminogen activator for acute ischemic stroke: where do we go from here? A cumulative meta-analysis. Stroke 34(6):1437–1442.  https://doi.org/10.1161/01.str.0000072513.72262.7e CrossRefPubMedGoogle Scholar
  72. Wei K, Wang P, Miao CY (2012) A double-edged sword with therapeutic potential: an updated role of autophagy in ischemic cerebral injury. CNS Neurosci Ther 18(11):879–886.  https://doi.org/10.1111/cns.12005 CrossRefPubMedGoogle Scholar
  73. Winkelmann ER, Charcansky A, Faccioni-Heuser MC, Netto CA, Achaval M (2006) An ultrastructural analysis of cellular death in the CA1 field in the rat hippocampus after transient forebrain ischemia followed by 2, 4 and 10 days of reperfusion. Anat Embryol 211(5):423–434.  https://doi.org/10.1007/s00429-006-0095-z CrossRefPubMedGoogle Scholar
  74. Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV (2011) Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 6(1):11.  https://doi.org/10.1186/1750-1326-6-11 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wu W, Liu P, Li J (2012) Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 82(3):249–258.  https://doi.org/10.1016/j.critrevonc.2011.08.004 CrossRefPubMedGoogle Scholar
  76. Xia DY, Li W, Qian HR, Yao S, Liu JG, Qi XK (2013) Ischemia preconditioning is neuroprotective in a rat cerebral ischemic injury model through autophagy activation and apoptosis inhibition. Braz J Med Biol Res 46(7):580–588.  https://doi.org/10.1590/1414-431X20133161 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Xin XY, Pan J, Wang XQ, Ma JF, Ding JQ, Yang GY, Chen SD (2011) 2-methoxyestradiol attenuates autophagy activation after global ischemia. Can J Neurol Sci 38(04):631–638.  https://doi.org/10.1017/S031716710001218X CrossRefPubMedGoogle Scholar
  78. Xu Y, Wang J, Song X, Qu L, Wei R, He F, Wang K, Luo B (2016) RIP3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via AIF. Sci Rep 6(1):29362.  https://doi.org/10.1038/srep29362 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23(1):33–42.  https://doi.org/10.1247/csf.23.33 CrossRefPubMedGoogle Scholar
  80. Yamashima T, Tonchev AB, Tsukada T, Saido TC, Imajoh-Ohmi S, Momoi T, Kominami E (2003) Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates. Hippocampus 13(7):791–800.  https://doi.org/10.1002/hipo.10127 CrossRefPubMedGoogle Scholar
  81. Ye YC, Wang HJ, Chen L, Liu WW, Tashiro SI, Onodera S, Xia MY, Ikejima T (2013) Negatively-regulated necroptosis by autophagy required caspase-6 activation in TNFalpha-treated murine fibrosarcoma L929 cells. Int Immunopharmacol 17(3):548–555.  https://doi.org/10.1016/j.intimp.2013.05.009 CrossRefPubMedGoogle Scholar
  82. Yin B, Xu Y, Wei RL, He F, Luo BY, Wang JY (2015) Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in Necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury. Brain Res 1609:63–71.  https://doi.org/10.1016/j.brainres.2015.03.024 CrossRefPubMedGoogle Scholar
  83. Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y (1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266(26):17707–17712PubMedGoogle Scholar
  84. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science (New York, NY) 304(5676):1500–1502.  https://doi.org/10.1126/science.1096645 CrossRefGoogle Scholar
  85. Yu L et al (2006) Autophagic programmed cell death by selective catalase degradation. Proc Nat Acad Sci U S A 103:4952–4957.  https://doi.org/10.1073/pnas.0511288103 CrossRefGoogle Scholar
  86. Yuan N, Song L, Zhang S, Lin W, Cao Y, Xu F, Fang Y, Wang Z, Zhang H, Li X, Wang Z, Cai J, Wang J, Zhang Y, Mao X, Zhao W, Hu S, Chen S, Wang J (2015) Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica 100(3):345–356.  https://doi.org/10.3324/haematol.2014.113324 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science (New York, NY) 325(5938):332–336.  https://doi.org/10.1126/science.1172308 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fari Ryan
    • 1
  • Fariba Khodagholi
    • 1
  • Leila Dargahi
    • 2
  • Dariush Minai-Tehrani
    • 3
  • Abolhassan Ahmadiani
    • 1
  1. 1.Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
  2. 2.NeuroBiology Research CenterShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Bioresearch Lab, Faculty of Biological SciencesShahid Beheshti University G.CTehranIran

Personalised recommendations