Neurotoxicity Research

, Volume 33, Issue 3, pp 593–606 | Cite as

Induction of Neuroinflammatory Response and Histopathological Alterations Caused by Quinolinic Acid Administration in the Striatum of Glutaryl-CoA Dehydrogenase Deficient Mice

  • Alexandre Umpierrez Amaral
  • Bianca Seminotti
  • Janaína Camacho da Silva
  • Francine Hehn de Oliveira
  • Rafael Teixeira Ribeiro
  • Carmen Regla Vargas
  • Guilhian Leipnitz
  • Abel Santamaría
  • Diogo Onofre Souza
  • Moacir Wajner
ORIGINAL ARTICLE
  • 129 Downloads

Abstract

Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase (GCDH) activity. Patients usually present progressive cortical leukodystrophy and commonly develop acute bilateral striatal degeneration mainly during infections that markedly worse their prognosis. A role for quinolinic acid (QA), a key metabolite of the kynurenine pathway, which is activated during inflammatory processes, on the pathogenesis of the acute striatum degeneration occurring in GA I was proposed but so far has not yet been evaluated. Therefore, we investigated whether an acute intrastriatal administration of quinolinic acid (QA) could induce histopathological alterations in the striatum of 30-day-old wild-type (WT) and GCDH knockout (Gcdh−/−) mice. Striatum morphology was evaluated by hematoxylin and eosin, T lymphocyte presence (CD3), and glial activation (GFAP and S100β) by immunohistochemistry and 3-nitrotyrosine (YNO2) by immunofluorescence. QA provoked extensive vacuolation, edema, and especially lymphocyte infiltration in the striatum of Gcdh−/−. QA also enhanced CD3 staining and the number of YNO2 positive cells in Gcdh−/− mice, relatively to WT, indicating T lymphocyte infiltration and nitrosative stress, respectively. QA-treated WT mice also showed an increase of GFAP and S100β staining, which is indicative of reactive astrogliosis, whereas the levels of these astrocytic proteins were not changed in Gcdh−/− QA-injected mice. The present data indicate that QA significantly contributes to the histopathological changes observed in the striatum of Gcdh−/− mice.

Keywords

Glutaric acidemia type I Acute striatum degeneration Neuroinflammation Quinolinic acid Histopathology Nitrosative stress 

Notes

Compliance with Ethical Standards

This study was performed in strict accordance with the Principles of Laboratory Animal Care, National Institute of Health of United States of America, NIH, publication no. 85-23, revised in 2011, the International Guiding Principles for Biomedical Research Involving Animals, and approved by the Ethical Committee for the Care and Use of Laboratory Animals of the Hospital de Clínicas de Porto Alegre (no. 140544).

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. Amaral AU, Cecatto C, Seminotti B, Zanatta A, Fernandes CG, Busanello EN, Braga LM, Ribeiro CA, de Souza DO, Woontner M, Koeller DM, Goodman S, Wajner M (2012a) Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice. Mol Genet Metab 107(1–2):81–86.  https://doi.org/10.1016/j.ymgme.2012.04.015 CrossRefPubMedGoogle Scholar
  2. Amaral AU, Seminotti B, Cecatto C, Fernandes CG, Busanello EN, Zanatta A, Kist LW, Bogo MR, de Souza DO, Woontner M, Goodman S, Koeller DM, Wajner M (2012b) Reduction of Na+, K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: a possible mechanism for brain injury in glutaric aciduria type I. Mol Genet Metab 107(3):375–382.  https://doi.org/10.1016/j.ymgme.2012.08.016 CrossRefPubMedGoogle Scholar
  3. Amaral AU, Cecatto C, Seminotti B, Ribeiro CA, Lagranha VL, Pereira CC, de Oliveira FH, de Souza DG, Goodman S, Woontner M, Wajner M (2015) Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload. Brain Res 1620:116–129.  https://doi.org/10.1016/j.brainres.2015.05.013 CrossRefPubMedGoogle Scholar
  4. Boy N, Muhlhausen C, Maier EM, Heringer J, Assmann B, Burgard P, Dixon M, Fleissner S, Greenberg CR, Harting I, Hoffmann GF, Karall D, Koeller DM, Krawinkel MB, Okun JG, Opladen T, Posset R, Sahm K, Zschocke J, Kolker S, Additional individual c (2017) Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: second revision. J Inherit Metab Dis 40(1):75–101.  https://doi.org/10.1007/s10545-016-9999-9
  5. Brismar J, Ozand PT (1995) CT and MR of the brain in glutaric acidemia type I: a review of 59 published cases and a report of 5 new patients. AJNR Am J Neuroradiol 16(4):675–683PubMedGoogle Scholar
  6. Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, Mori T, Gotz M (2008) Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A 105(9):3581–3586.  https://doi.org/10.1073/pnas.0709002105 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Busanello EN, Pettenuzzo L, Botton PH, Pandolfo P, de Souza DO, Woontner M, Goodman S, Koeller D, Wajner M (2013) Neurodevelopmental and cognitive behavior of glutaryl-CoA dehydrogenase deficient knockout mice. Life Sci 92(2):137–142.  https://doi.org/10.1016/j.lfs.2012.11.013 CrossRefPubMedGoogle Scholar
  8. Busanello EN, Fernandes CG, Martell RV, Lobato VG, Goodman S, Woontner M, de Souza DO, Wajner M (2014) Disturbance of the glutamatergic system by glutaric acid in striatum and cerebral cortex of glutaryl-CoA dehydrogenase-deficient knockout mice: possible implications for the neuropathology of glutaric acidemia type I. J Neurol Sci 346(1–2):260–267.  https://doi.org/10.1016/j.jns.2014.09.003 CrossRefPubMedGoogle Scholar
  9. Colin-Gonzalez AL, Paz-Loyola AL, Serratos I, Seminotti B, Ribeiro CA, Leipnitz G, Souza DO, Wajner M, Santamaria A (2015) Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: relevance for metabolic acidemias. Neuroscience 308:64–74.  https://doi.org/10.1016/j.neuroscience.2015.09.002 CrossRefPubMedGoogle Scholar
  10. da Rosa MS, Joao Ribeiro CA, Seminotti B, Teixeira Ribeiro R, Amaral AU, Coelho Dde M, de Oliveira FH, Leipnitz G, Wajner M (2015) In vivo intracerebral administration of L-2-hydroxyglutaric acid provokes oxidative stress and histopathological alterations in striatum and cerebellum of adolescent rats. Free Radic Biol Med 83:201–213.  https://doi.org/10.1016/j.freeradbiomed.2015.02.008 CrossRefPubMedGoogle Scholar
  11. de Oliveira Marques F, Hagen ME, Pederzolli CD, Sgaravatti AM, Durigon K, Testa CG, Wannmacher CM, de Souza Wyse AT, Wajner M, Dutra-Filho CS (2003) Glutaric acid induces oxidative stress in brain of young rats. Brain Res 964(1):153–158.  https://doi.org/10.1016/S0006-8993(02)04118-5 CrossRefPubMedGoogle Scholar
  12. Fighera MR, Bonini JS, de Oliveira TG, Frussa-Filho R, Rocha JB, Dutra-Filho CS, Rubin MA, Mello CF (2003) GM1 ganglioside attenuates convulsions and thiobarbituric acid reactive substances production induced by the intrastriatal injection of methylmalonic acid. Int J Biochem Cell Biol 35(4):465–473.  https://doi.org/10.1016/S1357-2725(02)00275-3 CrossRefPubMedGoogle Scholar
  13. Funk CB, Prasad AN, Frosk P, Sauer S, Kolker S, Greenberg CR, Del Bigio MR (2005) Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohort. Brain 128(Pt 4):711–722.  https://doi.org/10.1093/brain/awh401 CrossRefPubMedGoogle Scholar
  14. Garbade SF, Greenberg CR, Demirkol M, Gokcay G, Ribes A, Campistol J, Burlina AB, Burgard P, Kolker S (2014) Unravelling the complex MRI pattern in glutaric aciduria type I using statistical models-a cohort study in 180 patients. J Inherit Metab  Dis 37(5):763–73.  https://doi.org/10.1007/s10545-014-9676-9
  15. Goodman S, Frerman F (eds) (2001) Organic acidemias due to defects in lysine oxidation: 2-ketoadipic academia and glutaric acidemia. The metabolic and molecular bases of inherited disease, 8th edn. New York, McGraw-Hill IncGoogle Scholar
  16. Goodman SI, Norenberg MD, Shikes RH, Breslich DJ, Moe PG (1977) Glutaric aciduria: biochemical and morphologic considerations. J Pediatr 90(5):746–750.  https://doi.org/10.1016/S0022-3476(77)81240-7 CrossRefPubMedGoogle Scholar
  17. Guillemin GJ (2012) Quinolinic acid, the inescapable neurotoxin. FEBS J 279(8):1356–1365.  https://doi.org/10.1111/j.1742-4658.2012.08485.x CrossRefPubMedGoogle Scholar
  18. Harting I, Neumaier-Probst E, Seitz A, Maier EM, Assmann B, Baric I, Troncoso M, Muhlhausen C, Zschocke J, Boy NP, Hoffmann GF, Garbade SF, Kolker S (2009) Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain 132(Pt 7):1764–1782.  https://doi.org/10.1093/brain/awp112 CrossRefPubMedGoogle Scholar
  19. Hoffmann GF, Zschocke J (1999) Glutaric aciduria type I: from clinical, biochemical and molecular diversity to successful therapy. J Inherit Metab Dis 22(4):381–391.  https://doi.org/10.1023/A:1005543904484 CrossRefPubMedGoogle Scholar
  20. Ignarro RS, Vieira AS, Sartori CR, Langone F, Rogerio F, Parada CA (2013) JAK2 inhibition is neuroprotective and reduces astrogliosis after quinolinic acid striatal lesion in adult mice. J Chem Neuroanat 48-49:14–22.  https://doi.org/10.1016/j.jchemneu.2013.02.005 CrossRefPubMedGoogle Scholar
  21. Jafari P, Braissant O, Bonafe L, Ballhausen D (2011) The unsolved puzzle of neuropathogenesis in glutaric aciduria type I. Mol Genet Metab 104(4):425–437.  https://doi.org/10.1016/j.ymgme.2011.08.027 CrossRefPubMedGoogle Scholar
  22. Jafari P, Braissant O, Zavadakova P, Henry H, Bonafe L, Ballhausen D (2013) Ammonium accumulation and cell death in a rat 3D brain cell model of glutaric aciduria type I. PLoS One 8(1):e53735.  https://doi.org/10.1371/journal.pone.0053735 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jamwal S, Singh S, Kaur N, Kumar P (2015) Protective effect of spermidine against excitotoxic neuronal death induced by quinolinic acid in rats: possible neurotransmitters and neuroinflammatory mechanism. Neurotox Res 28(2):171–184.  https://doi.org/10.1007/s12640-015-9535-y CrossRefPubMedGoogle Scholar
  24. Kamphuis W, Kooijman L, Orre M, Stassen O, Pekny M, Hol EM (2015) GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wild-type mice and changes the transcriptional response of reactive glia in mouse model for Alzheimer’s disease. Glia 63(6):1036–1056.  https://doi.org/10.1002/glia.22800 CrossRefPubMedGoogle Scholar
  25. Keyser B, Glatzel M, Stellmer F, Kortmann B, Lukacs Z, Kolker S, Sauer SW, Muschol N, Herdering W, Thiem J, Goodman SI, Koeller DM, Ullrich K, Braulke T, Muhlhausen C (2008) Transport and distribution of 3-hydroxyglutaric acid before and during induced encephalopathic crises in a mouse model of glutaric aciduria type 1. Biochim Biophys Acta 1782(6):385–390.  https://doi.org/10.1016/j.bbadis.2008.02.008 CrossRefPubMedGoogle Scholar
  26. Koeller DM, Woontner M, Crnic LS, Kleinschmidt-DeMasters B, Stephens J, Hunt EL, Goodman SI (2002) Biochemical, pathologic and behavioral analysis of a mouse model of glutaric acidemia type I. Hum Mol Genet 11(4):347–357.  https://doi.org/10.1093/hmg/11.4.347 CrossRefPubMedGoogle Scholar
  27. Kolker S, Ahlemeyer B, Krieglstein J, Hoffmann GF (1999) 3-Hydroxyglutaric and glutaric acids are neurotoxic through NMDA receptors in vitro. J Inherit Metab Dis 22(3):259–262PubMedGoogle Scholar
  28. Kolker S, Ahlemeyer B, Huhne R, Mayatepek E, Krieglstein J, Hoffmann GF (2001) Potentiation of 3-hydroxyglutarate neurotoxicity following induction of astrocytic iNOS in neonatal rat hippocampal cultures. Eur J Neurosci 13(11):2115–2122.  https://doi.org/10.1046/j.0953-816x.2001.01595.x CrossRefPubMedGoogle Scholar
  29. Kolker S, Okun JG, Ahlemeyer B, Wyse AT, Horster F, Wajner M, Kohlmuller D, Mayatepek E, Krieglstein J, Hoffmann GF (2002) Chronic treatment with glutaric acid induces partial tolerance to excitotoxicity in neuronal cultures from chick embryo telencephalons. J Neurosci Res 68(4):424–431.  https://doi.org/10.1002/jnr.10189 CrossRefPubMedGoogle Scholar
  30. Kulijewicz-Nawrot M, Verkhratsky A, Chvatal A, Sykova E, Rodriguez JJ (2012) Astrocytic cytoskeletal atrophy in the medial prefrontal cortex of a triple transgenic mouse model of Alzheimer’s disease. J Anat 221(3):252–262.  https://doi.org/10.1111/j.1469-7580.2012.01536.x CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lagranha VL, Matte U, de Carvalho TG, Seminotti B, Pereira CC, Koeller DM, Woontner M, Goodman SI, de Souza DO, Wajner M (2014) Increased glutamate receptor and transporter expression in the cerebral cortex and striatum of gcdh−/− mice: possible implications for the neuropathology of glutaric acidemia type I. PLoS One 9(3):e90477.  https://doi.org/10.1371/journal.pone.0090477 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lanciotti A, Brignone MS, Bertini E, Petrucci TC, Aloisi F, Ambrosini E (2013) Astrocytes: emerging stars in leukodystrophy pathogenesis. Translat Neurosci 4(2).  https://doi.org/10.2478/s13380-013-0118-1
  33. Latini A, Borba Rosa R, Scussiato K, Llesuy S, Bello-Klein A, Wajner M (2002) 3-Hydroxyglutaric acid induces oxidative stress and decreases the antioxidant defenses in cerebral cortex of young rats. Brain Res 956(2):367–373.  https://doi.org/10.1016/S0006-8993(02)03573-4 CrossRefPubMedGoogle Scholar
  34. Lim CK, Fernandez-Gomez FJ, Braidy N, Estrada C, Costa C, Costa S, Bessede A, Fernandez-Villalba E, Zinger A, Herrero MT, Guillemin GJ (2017) Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Progress Neurobiol 155:76–95.  https://doi.org/10.1016/j.pneurobio.2015.12.009
  35. Lugo-Huitron R, Ugalde Muniz P, Pineda B, Pedraza-Chaverri J, Rios C, Perez-de la Cruz V (2013) Quinolinic acid: an endogenous neurotoxin with multiple targets. Oxidative Med Cell Longev 2013:104024CrossRefGoogle Scholar
  36. Maddison DC, Giorgini F (2015) The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 40:134–141.  https://doi.org/10.1016/j.semcdb.2015.03.002 CrossRefPubMedGoogle Scholar
  37. Magni DV, Furian AF, Oliveira MS, Souza MA, Lunardi F, Ferreira J, Mello CF, Royes LF, Fighera MR (2009) Kinetic characterization of l-[(3)H]glutamate uptake inhibition and increase oxidative damage induced by glutaric acid in striatal synaptosomes of rats. International Journal of Developmental Neuroscience : the official journal of the International Society for Developmental Neuroscience 27(1):65–72.  https://doi.org/10.1016/j.ijdevneu.2008.09.004 CrossRefGoogle Scholar
  38. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2(12):679–689.  https://doi.org/10.1038/ncpneuro0355 CrossRefPubMedGoogle Scholar
  39. Moore CS, Abdullah SL, Brown A, Arulpragasam A, Crocker SJ (2011) How factors secreted from astrocytes impact myelin repair. J Neurosci Res 89(1):13–21.  https://doi.org/10.1002/jnr.22482 CrossRefPubMedGoogle Scholar
  40. Muhl H, Pfeilschifter J (2003) Endothelial nitric oxide synthase: a determinant of TNFalpha production by human monocytes/macrophages. Biochem Biophys Res Commun 310(3):677–680.  https://doi.org/10.1016/j.bbrc.2003.09.039 CrossRefPubMedGoogle Scholar
  41. Nash B, Thomson CE, Linington C, Arthur AT, McClure JD, McBride MW, Barnett SC (2011) Functional duality of astrocytes in myelination. The Journal of Neuroscience : the official journal of the Society for Neuroscience 31(37):13028–13038.  https://doi.org/10.1523/JNEUROSCI.1449-11.2011 CrossRefGoogle Scholar
  42. Neumaier-Probst E, Harting I, Seitz A, Ding C, Kolker S (2004) Neuroradiological findings in glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency). J Inherit Metab Dis 27(6):869–876.  https://doi.org/10.1023/B:BOLI.0000045771.66300.2a CrossRefPubMedGoogle Scholar
  43. Olabarria M, Noristani HN, Verkhratsky A, Rodriguez JJ (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 58(7):831–838.  https://doi.org/10.1002/glia.20967 PubMedGoogle Scholar
  44. Olivera S, Fernandez A, Latini A, Rosillo JC, Casanova G, Wajner M, Cassina P, Barbeito L (2008) Astrocytic proliferation and mitochondrial dysfunction induced by accumulated glutaric acidemia I (GAI) metabolites: possible implications for GAI pathogenesis. Neurobiol Dis 32(3):528–534.  https://doi.org/10.1016/j.nbd.2008.09.011 CrossRefPubMedGoogle Scholar
  45. Olivera-Bravo S, Fernandez A, Sarlabos MN, Rosillo JC, Casanova G, Jimenez M, Barbeito L (2011) Neonatal astrocyte damage is sufficient to trigger progressive striatal degeneration in a rat model of glutaric acidemia-I. PLoS One 6(6):e20831.  https://doi.org/10.1371/journal.pone.0020831 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Paxinos G, Franklin KB (2012) The mouse brain in stereotaxic coordinates, 4th edn. Elsevier Academic Press, San DiegoGoogle Scholar
  47. Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131(3):323–345.  https://doi.org/10.1007/s00401-015-1513-1 CrossRefPubMedGoogle Scholar
  48. Perez-De La Cruz V, Carrillo-Mora P, Santamaria A (2012) Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms. International Journal of Tryptophan Research : IJTR 5:1–8.  https://doi.org/10.4137/IJTR.S8158 PubMedPubMedCentralGoogle Scholar
  49. Porciuncula LO, Emanuelli T, Tavares RG, Schwarzbold C, Frizzo ME, Souza DO, Wajner M (2004) Glutaric acid stimulates glutamate binding and astrocytic uptake and inhibits vesicular glutamate uptake in forebrain from young rats. Neurochem Int 45(7):1075–1086.  https://doi.org/10.1016/j.neuint.2004.05.002 CrossRefPubMedGoogle Scholar
  50. Reyes Ocampo J, Lugo Huitron R, Gonzalez-Esquivel D, Ugalde-Muniz P, Jimenez-Anguiano A, Pineda B, Pedraza-Chaverri J, Rios C, Perez de la Cruz V (2014) Kynurenines with neuroactive and redox properties: relevance to aging and brain diseases. Oxidative Med Cell Longev 2014:646909.  https://doi.org/10.1155/2014/646909 CrossRefGoogle Scholar
  51. Ribeiro CAJ, Grando V, Dutra CS, Wannmacher CMD, Wajner M (2006) Evidence that quinolinic acid severely impairs energy metabolism through activation of NMDA receptors in striatum from developing rats. J Neurochem 99(6):1531–1542.  https://doi.org/10.1111/j.1471-4159.2006.04199.x CrossRefPubMedGoogle Scholar
  52. Rodrigues MD, Seminotti B, Amaral AU, Leipnitz G, Goodman SI, Woontner M, de Souza DO, Wajner M (2015) Experimental evidence that overexpression of NR2B glutamate receptor subunit is associated with brain vacuolation in adult glutaryl-CoA dehydrogenase deficient mice: a potential role for glutamatergic-induced excitotoxicity in GA I neuropathology. J Neurol Sci 359(1–2):133–140.  https://doi.org/10.1016/j.jns.2015.10.043 CrossRefPubMedGoogle Scholar
  53. Rodrigues MD, Seminotti B, Zanatta A, de Mello Goncalves A, Bellaver B, Amaral AU, Quincozes-Santos A, Goodman SI, Woontner M, Souza DO, Wajner M (2017) Higher vulnerability of menadione-exposed cortical astrocytes of glutaryl-CoA dehydrogenase deficient mice to oxidative stress, mitochondrial dysfunction, and cell death: implications for the neurodegeneration in glutaric aciduria type I. Mol Neurobiol 54(6):4795–4805.  https://doi.org/10.1007/s12035-016-0023-z
  54. Rosa RB, Schwarzbold C, Dalcin KB, Ghisleni GC, Ribeiro CA, Moretto MB, Frizzo ME, Hoffmann GF, Souza DO, Wajner M (2004) Evidence that 3-hydroxyglutaric acid interacts with NMDA receptors in synaptic plasma membranes from cerebral cortex of young rats. Neurochem Int 45(7):1087–1094.  https://doi.org/10.1016/j.neuint.2004.05.001 CrossRefPubMedGoogle Scholar
  55. Rosa RB, Dalcin KB, Schmidt AL, Gerhardt D, Ribeiro CA, Ferreira GC, Schuck PF, Wyse AT, Porciuncula LO, Wofchuk S, Salbego CG, Souza DO, Wajner M (2007) Evidence that glutaric acid reduces glutamate uptake by cerebral cortex of infant rats. Life Sci 81(25–26):1668–1676.  https://doi.org/10.1016/j.lfs.2007.09.021 CrossRefPubMedGoogle Scholar
  56. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13(7):465–477.  https://doi.org/10.1038/nrn3257 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Seminotti B, da Rosa MS, Fernandes CG, Amaral AU, Braga LM, Leipnitz G, de Souza DO, Woontner M, Koeller DM, Goodman S, Wajner M (2012) Induction of oxidative stress in brain of glutaryl-CoA dehydrogenase deficient mice by acute lysine administration. Mol Genet Metab 106(1):31–8.  https://doi.org/10.1016/j.ymgme.2012.03.002
  58. Seminotti B, Amaral AU, da Rosa MS, Fernandes CG, Leipnitz G, Olivera-Bravo S, Barbeito L, Ribeiro CA, de Souza DO, Woontner M, Goodman SI, Koeller DM, Wajner M (2013) Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation. Mol Genet Metab 108(1):30–39.  https://doi.org/10.1016/j.ymgme.2012.11.001 CrossRefPubMedGoogle Scholar
  59. Seminotti B, Ribeiro RT, Amaral AU, da Rosa MS, Pereira CC, Leipnitz G, Koeller DM, Goodman S, Woontner M, Wajner M (2014) Acute lysine overload provokes protein oxidative damage and reduction of antioxidant defenses in the brain of infant glutaryl-CoA dehydrogenase deficient mice: a role for oxidative stress in GA I neuropathology. J Neurol Sci 344(1–2):105–113.  https://doi.org/10.1016/j.jns.2014.06.034 CrossRefPubMedGoogle Scholar
  60. Seminotti B, Amaral AU, Ribeiro RT, Rodrigues MD, Colin-Gonzalez AL, Leipnitz G, Santamaria A, Wajner M (2016) Oxidative stress, disrupted energy metabolism, and altered signaling pathways in glutaryl-CoA dehydrogenase knockout mice: potential implications of quinolinic acid toxicity in the neuropathology of glutaric acidemia type I. Mol Neurobiol 53(9):6459–6475.  https://doi.org/10.1007/s12035-015-9548-9 CrossRefPubMedGoogle Scholar
  61. Sloan SA, Barres BA (2014) Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr Opin Neurobiol 27:75–81.  https://doi.org/10.1016/j.conb.2014.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Strauss KA, Lazovic J, Wintermark M, Morton DH (2007) Multimodal imaging of striatal degeneration in Amish patients with glutaryl-CoA dehydrogenase deficiency. Brain 130(Pt 7):1905–1920.  https://doi.org/10.1093/brain/awm058 CrossRefPubMedGoogle Scholar
  63. Varadkar S, Surtees R (2004) Glutaric aciduria type I and kynurenine pathway metabolites: a modified hypothesis. J Inherit Metab Dis 27(6):835–842.  https://doi.org/10.1023/B:BOLI.0000045767.42193.97 CrossRefPubMedGoogle Scholar
  64. Vendramin Pasquetti M, Meier L, Loureiro S, Ganzella M, Junges B, Barbieri Caus L, Umpierrez Amaral A, Koeller DM, Goodman S, Woontner M, Gomes de Souza DO, Wajner M, Calcagnotto ME (2017) Impairment of GABAergic system contributes to epileptogenesis in glutaric acidemia type I. Epilepsia 58(10):1771-1781.  https://doi.org/10.1111/epi.13862
  65. Wajner M, Kolker S, Souza DO, Hoffmann GF, de Mello CF (2004) Modulation of glutamatergic and GABAergic neurotransmission in glutaryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 27(6):825–828.  https://doi.org/10.1023/B:BOLI.0000045765.37043.fb CrossRefPubMedGoogle Scholar
  66. Zinnanti WJ, Lazovic J, Wolpert EB, Antonetti DA, Smith MB, Connor JR, Woontner M, Goodman SI, Cheng KC (2006) A diet-induced mouse model for glutaric aciduria type I. Brain 129(Pt 4):899–910.  https://doi.org/10.1093/brain/awl009 CrossRefPubMedGoogle Scholar
  67. Zinnanti WJ, Lazovic J, Housman C, LaNoue K, O'Callaghan JP, Simpson I, Woontner M, Goodman SI, Connor JR, Jacobs RE, Cheng KC (2007) Mechanism of age-dependent susceptibility and novel treatment strategy in glutaric acidemia type I. J Clin Invest 117(11):3258–3270.  https://doi.org/10.1172/JCI31617 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Alexandre Umpierrez Amaral
    • 1
    • 2
  • Bianca Seminotti
    • 1
  • Janaína Camacho da Silva
    • 1
  • Francine Hehn de Oliveira
    • 3
  • Rafael Teixeira Ribeiro
    • 1
  • Carmen Regla Vargas
    • 1
    • 4
    • 5
  • Guilhian Leipnitz
    • 1
    • 6
  • Abel Santamaría
    • 7
  • Diogo Onofre Souza
    • 1
    • 6
  • Moacir Wajner
    • 1
    • 4
    • 6
  1. 1.Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Departamento de Ciências BiológicasUniversidade Regional Integrada do Alto Uruguai e das MissõesErechimBrazil
  3. 3.Serviço de PatologiaHospital de Clinicas de Porto AlegrePorto AlegreBrazil
  4. 4.Serviço de Genética MédicaHospital de Clínicas de Porto AlegrePorto AlegreBrazil
  5. 5.Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  6. 6.Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  7. 7.Laboratorio de Aminoácidos ExcitadoresInstituto Nacional de Neurología y NeurocirugíaMéxicoMexico

Personalised recommendations