Skip to main content

Advertisement

Log in

Kinesin-5 Blocker Monastrol Protects Against Bortezomib-Induced Peripheral Neurotoxicity

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Neurotoxicity is a relevant side effect of bortezomib treatment. Previous reports have shown that the development of peripheral neuropathy caused by anti-neoplastic agents may be a result of reduced axonal transport. Based on evidence from prior studies that the kinesin-5 inhibitor monastrol enhances axonal transport and improves neuronal regeneration, we focused on the neuroprotective role of monastrol during the chemotherapeutic treatment with bortezomib. Prolonged treatment of C57BL/6 mice with bortezomib induced a length-dependent small-fiber neuropathy with axonal atrophy and loss of sensory nerve fibers. The administration of monastrol substantially alleviated morphological features of axonal injury and functional measures of sensory neuropathy. Cytotoxicity studies in leukemia and multiple myeloma cell lines showed no interference of monastrol with the cytostatic effects of bortezomib. Our data indicate that the novel approach of targeting microtubule turnover by monastrol provides protection against bortezomib-induced neurotoxicity. The favorable cytotoxic profile of monastrol makes it an interesting candidate as neuroprotective agent in combined chemotherapy regimens that warrants further consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alé A, Bruna J, Herrando M, Navarro X, Udina E (2015) Toxic effects of bortezomib on primary sensory neurons and Schwann cells of adult mice. Neurotox Res 27:430–440. doi:10.1007/s12640-014-9514-8

    Article  PubMed  Google Scholar 

  • Baas PW, Matamoros AJ (2015) Inhibition of kinesin-5 improves regeneration of injured axons by a novel microtubule-based mechanism. Neural Regen Res 10:845–849. doi:10.4103/1673-5374.158351

    Article  PubMed  PubMed Central  Google Scholar 

  • Bobylev I, Joshi AR, Barham M, Ritter C, Neiss WF, Höke A, Lehmann HC (2015) Paclitaxel inhibits mRNA transport in axons. Neurobiol Dis 82:321–331. doi:10.1016/j.nbd.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  • Casafont I, Berciano MT, Lafarga M (2010) Bortezomib induces the formation of nuclear poly(A) RNA granules enriched in Sam68 and PABPN1 in sensory ganglia neurons. Neurotox Res 17:167–178. doi:10.1007/s12640-009-9086-1

    Article  CAS  PubMed  Google Scholar 

  • Cata JP, Weng H-R, Burton AW, Villareal H, Giralt S, Dougherty PM (2007) Quantitative sensory findings in patients with bortezomib-induced pain. J Pain Off J Am Pain Soc 8:296–306. doi:10.1016/j.jpain.2006.09.014

    Article  CAS  Google Scholar 

  • Chaudhry V, Cornblath DR, Polydefkis M, Ferguson A, Borrello I (2008) Characteristics of bortezomib- and thalidomide-induced peripheral neuropathy. J Peripher Nerv Syst JPNS 13:275–282. doi:10.1111/j.1529-8027.2008.00193.x

    Article  CAS  PubMed  Google Scholar 

  • Francis F, Roy S, Brady ST, Black MM (2005) Transport of neurofilaments in growing axons requires microtubules but not actin filaments. J Neurosci Res 79:442–450. doi:10.1002/jnr.20399

    Article  CAS  PubMed  Google Scholar 

  • Giannoccaro MP, Donadio V, Gomis Pèrez C, Borsini W, Di Stasi V, Liguori R (2011) Somatic and autonomic small fiber neuropathy induced by bortezomib therapy: an immunofluorescence study. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 32:361–363. doi:10.1007/s10072-010-0475-2

    Google Scholar 

  • Gold BG, Griffin JW, Price DL (1985) Slow axonal transport in acrylamide neuropathy: different abnormalities produced by single-dose and continuous administration. J Neurosci 5:1755–1768

    CAS  PubMed  Google Scholar 

  • Gold BG, Mobley WC, Matheson SF (1991) Regulation of axonal caliber, neurofilament content, and nuclear localization in mature sensory neurons by nerve growth factor. J Neurosci 11:943–955

    CAS  PubMed  Google Scholar 

  • Keswani SC, Jack C, Zhou C, Höke A (2006) Establishment of a rodent model of HIV-associated sensory neuropathy. J Neurosci 26:10299–10304. doi:10.1523/JNEUROSCI.3135-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Kilinc D, Blasiak A, O’Mahony JJ, Lee GU (2014) Low Piconewton towing of CNS axons against diffusing and surface-bound repellents requires the inhibition of motor protein-associated pathways. Sci Rep. doi:10.1038/srep07128

  • Ko M-H, Chen W-P, Hsieh S-T (2002) Neuropathology of skin denervation in acrylamide-induced neuropathy. Neurobiol Dis 11:155–165. doi:10.1006/nbdi.2002.0537

    Article  CAS  PubMed  Google Scholar 

  • Kolb NA, Smith AG, Singleton JR, Beck SL, Stoddard GJ, Brown S, Mooney K (2016) The association of chemotherapy-induced peripheral neuropathy symptoms and the risk of falling. JAMA Neurol 73:860–866. doi:10.1001/jamaneurol.2016.0383

    Article  PubMed  Google Scholar 

  • Lakshman R, Finn A (2001) Neutrophil disorders and their management. J Clin Pathol 54:7–19. doi:10.1136/jcp.54.1.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landowski TH, Megli CJ, Nullmeyer KD, Lynch RM, Dorr RT (2005) Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 65:3828–3836. doi:10.1158/0008-5472.CAN-04-3684

    Article  CAS  PubMed  Google Scholar 

  • Leandri M, Ghignotti M, Emionite L, Leandri S, Cilli M (2012) Electrophysiological features of the mouse tail nerves and their changes in chemotherapy induced peripheral neuropathy (CIPN). J Neurosci Methods 209:403–409. doi:10.1016/j.jneumeth.2012.07.005

    Article  PubMed  Google Scholar 

  • Lin S, Liu M, Son Y-J, Timothy Himes B, Snow DM, Yu W, Baas PW (2011) Inhibition of kinesin-5, a microtubule-based motor protein, as a strategy for enhancing regeneration of adult axons. Traffic Cph Den 12:269–286. doi:10.1111/j.1600-0854.2010.01152.x

    Article  CAS  Google Scholar 

  • Meregalli C, Chiorazzi A, Carozzi VA, Canta A, Sala B, Colombo M, Oggioni N, Ceresa C, Foudah D, La Russa F, Miloso M, Nicolini G, Marmiroli P, Bennett DL, Cavaletti G (2014) Evaluation of tubulin polymerization and chronic inhibition of proteasome as citotoxicity mechanisms in bortezomib-induced peripheral neuropathy. Cell Cycle 13(4):612–621. doi:10.4161/cc.27476 

  • Moore DC (2016) Drug-induced neutropenia. Pharm Ther 41:765–768

    Google Scholar 

  • Murinson BB, Hoffman PN, Banihashemi MR, Meyer RA, Griffin JW (2005) C-fiber (Remak) bundles contain both isolectin B4-binding and calcitonin gene-related peptide-positive axons. J Comp Neurol 484:392–402. doi:10.1002/cne.20506

    Article  CAS  PubMed  Google Scholar 

  • Myers KA, Baas PW (2007) Kinesin-5 regulates the growth of the axon by acting as a brake on its microtubule array. J Cell Biol 178:1081–1091. doi:10.1083/jcb.200702074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrocki ST, Carew JS, Dunner K, Boise LH, Chiao PJ, Huang P, Abbruzzese JL, McConkey DJ (2005) Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 65:11510–11519. doi:10.1158/0008-5472.CAN-05-2394

    Article  CAS  PubMed  Google Scholar 

  • Parhad IM, Scott JN, Cellars LA, Bains JS, Krekoski CA, Clark AW (1995) Axonal atrophy in aging is associated with a decline in neurofilament gene expression. J Neurosci Res 41:355–366. doi:10.1002/jnr.490410308

    Article  CAS  PubMed  Google Scholar 

  • Poruchynsky MS, Sackett DL, Robey RW, Ward Y, Annunziata C, Fojo T (2008) Proteasome inhibitors increase tubulin polymerization and stabilization in tissue culture cells: a possible mechanism contributing to peripheral neuropathy and cellular toxicity following proteasome inhibition. Cell Cycle Georget Tex 7:940–949

    Article  CAS  Google Scholar 

  • Richardson PG, Briemberg H, Jagannath S, Wen PY, Barlogie B, Berenson J, Singhal S, Siegel DS, Irwin D, Schuster M, Srkalovic G, Alexanian R, Rajkumar SV, Limentani S, Alsina M, Orlowski RZ, Najarian K, Esseltine D, Anderson KC, Amato AA (2006) Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol Off J Am Soc Clin Oncol 24:3113–3120. doi:10.1200/JCO.2005.04.7779

    Article  CAS  Google Scholar 

  • Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau J-L, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, San-Miguel JF, Bladé J, Boccadoro M, Cavenagh J, Dalton WS, Boral AL, Esseltine DL, Porter JB, Schenkein D, Anderson KC, Assessment of Proteasome Inhibition for Extending Remissions (APEX) Investigators (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498. doi:10.1056/NEJMoa043445

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Xie W, Mitsiades C, Chanan-Khan AA, Lonial S, Hassoun H, Avigan DE, Oaklander AL, Kuter DJ, Wen PY, Kesari S, Briemberg HR, Schlossman RL, Munshi NC, Heffner LT, Doss D, Esseltine D-L, Weller E, Anderson KC, Amato AA (2009) Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J Clin Oncol Off J Am Soc Clin Oncol 27:3518–3525. doi:10.1200/JCO.2008.18.3087

    Article  CAS  Google Scholar 

  • Robak T, Huang H, Jin J, Zhu J, Liu T, Samoilova O, Pylypenko H, Verhoef G, Siritanaratkul N, Osmanov E, Alexeeva J, Pereira J, Drach J, Mayer J, Hong X, Okamoto R, Pei L, Rooney B, van de Velde H, Cavalli F, LYM-3002 Investigators (2015) Bortezomib-based therapy for newly diagnosed mantle-cell lymphoma. N Engl J Med 372:944–953. doi:10.1056/NEJMoa1412096

    Article  CAS  PubMed  Google Scholar 

  • San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M, Spicka I, Petrucci MT, Palumbo A, Samoilova OS, Dmoszynska A, Abdulkadyrov KM, Schots R, Jiang B, Mateos M-V, Anderson KC, Esseltine DL, Liu K, Cakana A, van de Velde H, Richardson PG, Trial Investigators VISTA (2008) Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359:906–917. doi:10.1056/NEJMoa0801479

    Article  CAS  PubMed  Google Scholar 

  • Staff NP, Podratz JL, Grassner L, Bader M, Paz J, Knight AM, Loprinzi CL, Trushina E, Windebank AJ (2013) Bortezomib alters microtubule polymerization and axonal transport in rat dorsal root ganglion neurons. Neurotoxicology 39:124–131. doi:10.1016/j.neuro.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Klaw MC, Lemay MA, Baas PW, Tom VJ (2015) Pharmacologically inhibiting kinesin-5 activity with monastrol promotes axonal regeneration following spinal cord injury. Exp Neurol 263:172–176. doi:10.1016/j.expneurol.2014.10.013

    Article  CAS  PubMed  Google Scholar 

  • Yabe JT, Pimenta A, Shea TB (1999) Kinesin-mediated transport of neurofilament protein oligomers in growing axons. J Cell Sci 112(Pt 21):3799–3814

    CAS  PubMed  Google Scholar 

  • Zheng H, Xiao WH, Bennett GJ (2012) Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy. Exp Neurol 238:225–234. doi:10.1016/j.expneurol.2012.08.023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Helmar Lehmann and Ilja Bobylev were supported by the Deutsche Krebshilfe (German Cancer Aid). The technical assistance of Claudia Drapatz (Department of Neurology, University Hospital of Cologne, Germany) and Petra Müller (Department of Anatomy I, Medical Faculty, University of Cologne, Germany) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmar C. Lehmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, I., Peters, D., Vyas, M. et al. Kinesin-5 Blocker Monastrol Protects Against Bortezomib-Induced Peripheral Neurotoxicity. Neurotox Res 32, 555–562 (2017). https://doi.org/10.1007/s12640-017-9760-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9760-7

Keywords

Navigation