Neurotoxicity Research

, Volume 32, Issue 2, pp 276–290 | Cite as

α-Ketoadipic Acid and α-Aminoadipic Acid Cause Disturbance of Glutamatergic Neurotransmission and Induction of Oxidative Stress In Vitro in Brain of Adolescent Rats

  • Janaína Camacho da Silva
  • Alexandre Umpierrez Amaral
  • Cristiane Cecatto
  • Alessandro Wajner
  • Kálita dos Santos Godoy
  • Rafael Teixeira Ribeiro
  • Aline de Mello Gonçalves
  • Ângela Zanatta
  • Mateus Struecker da Rosa
  • Samanta Oliveira Loureiro
  • Carmen Regla Vargas
  • Guilhian Leipnitz
  • Diogo Onofre Gomes de Souza
  • Moacir Wajner


Tissue accumulation of α-ketoadipic (KAA) and α-aminoadipic (AAA) acids is the biochemical hallmark of α-ketoadipic aciduria. This inborn error of metabolism is currently considered a biochemical phenotype with uncertain clinical significance. Considering that KAA and AAA are structurally similar to α-ketoglutarate and glutamate, respectively, we investigated the in vitro effects of these compounds on glutamatergic neurotransmission in the brain of adolescent rats. Bioenergetics and redox homeostasis were also investigated because they represent fundamental systems for brain development and functioning. We first observed that AAA significantly decreased glutamate uptake, whereas glutamate dehydrogenase activity was markedly inhibited by KAA in a competitive fashion. In addition, AAA and more markedly KAA induced generation of reactive oxygen and nitrogen species (increase of 2′,7′-dichloroflurescein (DCFH) oxidation and nitrite/nitrate levels), lipid peroxidation (increase of malondialdehyde concentrations), and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content), besides decreasing the antioxidant defenses (reduced glutathione (GSH)) and aconitase activity. Furthermore, KAA-induced lipid peroxidation and GSH decrease were prevented by the antioxidants α-tocopherol, melatonin, and resveratrol, suggesting the involvement of reactive species in these effects. Noteworthy, the classical inhibitor of NMDA glutamate receptors MK-801 was not able to prevent KAA-induced and AAA-induced oxidative stress, determined by DCFH oxidation and GSH levels, making unlikely a secondary induction of oxidative stress through overstimulation of glutamate receptors. In contrast, KAA and AAA did not significantly change brain bioenergetic parameters. We speculate that disturbance of glutamatergic neurotransmission and redox homeostasis by KAA and AAA may play a role in those cases of α-ketoadipic aciduria that display neurological symptoms.


α-Ketoadipic aciduria α-Ketoadipic acid α-Aminoadipic acid Glutamatergic neurotransmission Redox homeostasis Bioenergetics 



This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico #404883/2013-3, Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul #2266-2551/14-2, Pró-Reitoria de Pesquisa/Universidade Federal do Rio Grande do Sul #PIBIC 27613, and Financiadora de Estudos e Projetos/Rede Instituto Brasileiro de Neurociência # 01.06.0842-00.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Akerman KE, Wikstrom MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68(2):191–197CrossRefPubMedGoogle Scholar
  2. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302(2–3):141–145CrossRefPubMedGoogle Scholar
  3. Anisimov VN (2006) Premature ageing prevention: limitations and perspectives of pharmacological interventions. Curr Drug Targets 7(11):1485–1503CrossRefPubMedGoogle Scholar
  4. Au A, Lam W, Tsang J, Yau TK, Soong I, Yeo W, Suen J, Ho WM, Wong KY, Kwong A, Suen D, Sze WK, Ng A, Girgis A, Fielding R (2013) Supportive care needs in Hong Kong Chinese women confronting advanced breast cancer. Psychooncology 22(5):1144–1151CrossRefPubMedGoogle Scholar
  5. Bhandary B, Marahatta A, Kim HR, Chae HJ (2012) An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14(1):434–456CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  7. Brown DR, Kretzschmar HA (1998) The glio-toxic mechanism of alpha-aminoadipic acid on cultured astrocytes. J Neurocytol 27(2):109–118CrossRefPubMedGoogle Scholar
  8. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352PubMedGoogle Scholar
  9. Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269(47):29409–29415PubMedGoogle Scholar
  10. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated atpase activity. Anal Biochem 157(2):375–380CrossRefPubMedGoogle Scholar
  11. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48(6):749–762CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cornish-Bowden A (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. The Biochemical journal 137(1):143–144CrossRefPubMedPubMedCentralGoogle Scholar
  13. Danhauser K, Sauer SW, Haack TB, Wieland T, Staufner C, Graf E, Zschocke J, Strom TM, Traub T, Okun JG, Meitinger T, Hoffmann GF, Prokisch H, Kolker S (2012) DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria. Am J Hum Genet 91(6):1082–1087CrossRefPubMedPubMedCentralGoogle Scholar
  14. Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Med Cell Longev 2016:1245049Google Scholar
  15. Dienel GA (2013) Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis? Neurochem Int 63(4):244–258CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dominah GA, McMinimy RA, Kallon S, Kwakye GF (2017) Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington’s disease. Neurotoxicology. In pressGoogle Scholar
  17. Duran M, Beemer FA, Wadman SK, Wendel U, Janssen B (1984) A patient with alpha-ketoadipic and alpha-aminoadipic aciduria. J Inherit Metab Dis 7(2):61CrossRefPubMedGoogle Scholar
  18. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421CrossRefPubMedGoogle Scholar
  19. Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388(2):261–266CrossRefPubMedGoogle Scholar
  20. Fellows FC, Lewis MH (1973) Lysine metabolism in mammals. The Biochemical journal 136(2):329–334CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fenton WA, Gravel RA, Rosenblatt DS (2001) Disorders of propionate and methylmalonate metabolism. In: The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill Inc, New YorkGoogle Scholar
  22. Figueira TR, Melo DR, Vercesi AE, Castilho RF (2012) Safranine as a fluorescent probe for the evaluation of mitochondrial membrane potential in isolated organelles and permeabilized cells. Methods Mol Biol 810:103–117CrossRefPubMedGoogle Scholar
  23. Fischer MH, Brown RR (1980) Tryptophan and lysine metabolism in alpha-aminoadipic aciduria. Am J Med Genet 5(1):35–41CrossRefPubMedGoogle Scholar
  24. Fischer MH, Gerritsen T, Opitz JM (1974) Alpha-aminoadipic aciduria, a non-deleterious inborn metabolic defect. Humangenetik 24(4):265–270PubMedGoogle Scholar
  25. Fischer JC, Ruitenbeek W, Berden JA, Trijbels JMF, Veerkamp JH, Stadhouders AM, Sengers RCA, Janssen AJM (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clinica chimica acta; international journal of clinical chemistry 153(1):23–36CrossRefPubMedGoogle Scholar
  26. Frigerio F, Karaca M, De Roo M, Mlynarik V, Skytt DM, Carobbio S, Pajecka K, Waagepetersen HS, Gruetter R, Muller D, Maechler P (2012) Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission. J Neurochem 123(3):342–348CrossRefPubMedGoogle Scholar
  27. Frizzo ME, Lara DR, Prokopiuk Ade S, Vargas CR, Salbego CG, Wajner M, Souza DO (2002) Guanosine enhances glutamate uptake in brain cortical slices at normal and excitotoxic conditions. Cell Mol Neurobiol 22(3):353–363CrossRefPubMedGoogle Scholar
  28. Funk CB, Prasad AN, Frosk P, Sauer S, Kolker S, Greenberg CR, Del Bigio MR (2005) Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohort. Brain 128(Pt 4):711–722CrossRefPubMedGoogle Scholar
  29. Gardner PR (2002) Aconitase: sensitive target and measure of superoxide. Methods Enzymol 349:9–23CrossRefPubMedGoogle Scholar
  30. Gardner PR, Fridovich I (1992) Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem 267(13):8757–8763PubMedGoogle Scholar
  31. Gardner PR, Fridovich I (1993) Effect of glutathione on aconitase in Escherichia coli. Arch Biochem Biophys 301(1):98–102CrossRefPubMedGoogle Scholar
  32. Gardner PR, Raineri I, Epstein LB, White CW (1995) Superoxide radical and iron modulate aconitase activity in mammalian cells. J Biol Chem 270(22):13399–13405CrossRefPubMedGoogle Scholar
  33. Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41(10):1837–1845CrossRefPubMedGoogle Scholar
  34. Goodman SI, Duran M (2014) Biochemical phenotypes of questionable clinical significance. Physician’s guide to the diagnosis, treatment, and follow-up of inherited metabolic diseases, 1st edn. Springer, HeidelbergGoogle Scholar
  35. Hagen J, te Brinke H, Wanders RJ, Knegt AC, Oussoren E, Hoogeboom AJ, Ruijter GJ, Becker D, Schwab KO, Franke I, Duran M, Waterham HR, Sass JO, Houten SM (2015) Genetic basis of alpha-aminoadipic and alpha-ketoadipic aciduria. J Inherit Metab Dis 38(5):873–879CrossRefPubMedGoogle Scholar
  36. Hallen A, Jamie JF, Cooper AJ (2013) Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 45(6):1249–1272CrossRefPubMedGoogle Scholar
  37. Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. Free radicals in biology and medicine, 4th edn. Oxford University Press, OxfordGoogle Scholar
  38. Hoffmann GF, Kölker, S (2011) Cerebral organic acid disorders and other disorders of lysine catabolism. Inborn Metabolic Diseases, 5 edn., HeidelbergGoogle Scholar
  39. Hoffmann GF, Seppel CK, Holmes B, Mitchell L, Christen HJ, Hanefeld F, Rating D, Nyhan WL (1993) Quantitative organic acid analysis in cerebrospinal fluid and plasma: reference values in a pediatric population. J Chromatogr 617(1):1–10CrossRefPubMedGoogle Scholar
  40. Huck S, Grass F, Hortnagl H (1984) The glutamate analogue alpha-aminoadipic acid is taken up by astrocytes before exerting its gliotoxic effect in vitro. The Journal of neuroscience : the official journal of the Society for Neuroscience 4(10):2650–2657Google Scholar
  41. Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clinica chimica acta; international journal of clinical chemistry 7(5):597–59&CrossRefPubMedGoogle Scholar
  42. Jafari P, Braissant O, Bonafe L, Ballhausen D (2011) The unsolved puzzle of neuropathogenesis in glutaric aciduria type I. Mol Genet Metab 104(4):425–437CrossRefPubMedGoogle Scholar
  43. Jones DH, Matus AI (1974) Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 356(3):276–287CrossRefPubMedGoogle Scholar
  44. Kolker S, Hoffmann GF, Schor DS, Feyh P, Wagner L, Jeffrey I, Pourfarzam M, Okun JG, Zschocke J, Baric I, Bain MD, Jakobs C, Chalmers RA (2003) Glutaryl-CoA dehydrogenase deficiency: region-specific analysis of organic acids and acylcarnitines in post mortem brain predicts vulnerability of the putamen. Neuropediatrics 34(5):253–260CrossRefPubMedGoogle Scholar
  45. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519CrossRefPubMedGoogle Scholar
  46. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231CrossRefPubMedGoogle Scholar
  47. Leipnitz G, Seminotti B, Fernandes CG, Amaral AU, Beskow AP, da Silva LB, Zanatta A, Ribeiro CA, Vargas CR, Wajner M (2009) Striatum is more vulnerable to oxidative damage induced by the metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency as compared to liver. Int J Dev Neurosci 27(4):351–356CrossRefPubMedGoogle Scholar
  48. Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357CrossRefPubMedGoogle Scholar
  49. Liang LP, Waldbaum S, Rowley S, Huang TT, Day BJ, Patel M (2012) Mitochondrial oxidative stress and epilepsy in SOD2 deficient mice: attenuation by a lipophilic metalloporphyrin. Neurobiol Dis 45(3):1068–1076CrossRefPubMedGoogle Scholar
  50. Lormans S, Lowenthal A (1974) Alpha-amino adipic aciduria in an oligophrenic child. Clinica chimica acta; international journal of clinical chemistry 57(1):97–101CrossRefPubMedGoogle Scholar
  51. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  52. Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW (2017) NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 12(1):7CrossRefPubMedPubMedCentralGoogle Scholar
  53. Maciel EN, Kowaltowski AJ, Schwalm FD, Rodrigues JM, Souza DO, Vercesi AE, Wajner M, Castilho RF (2004) Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition. J Neurochem 90(5):1025–1035CrossRefPubMedGoogle Scholar
  54. McBean GJ (1990) Intrastriatal injection of DL-alpha-aminoadipate reduces kainate toxicity in vitro. Neuroscience 34(1):225–234CrossRefPubMedGoogle Scholar
  55. McBean GJ (1994) Inhibition of the glutamate transporter and glial enzymes in rat striatum by the gliotoxin, alpha aminoadipate. Br J Pharmacol 113(2):536–540CrossRefPubMedPubMedCentralGoogle Scholar
  56. McKenna MC (2011) Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem Int 59(4):525–533CrossRefPubMedPubMedCentralGoogle Scholar
  57. McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol 4:191CrossRefGoogle Scholar
  58. Melo DR, Mirandola SR, Assuncao NA, Castilho RF (2012) Methylmalonate impairs mitochondrial respiration supported by NADH-linked substrates: involvement of mitochondrial glutamate metabolism. J Neurosci Res 90(6):1190–1199CrossRefPubMedGoogle Scholar
  59. Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF (2008) Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis 31(1):44–54CrossRefPubMedGoogle Scholar
  60. Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 81(11):769–776CrossRefPubMedGoogle Scholar
  61. Morrison JF (1954) The activation of aconitase by ferrous ions and reducing agents. Biochem J 58(4):685–692CrossRefPubMedPubMedCentralGoogle Scholar
  62. Navarro-Gonzalvez JA, Garcia-Benayas C, Arenas J (1998) Semiautomated measurement of nitrate in biological fluids. Clin Chem 44(3):679–681PubMedGoogle Scholar
  63. Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109(Suppl 1):133–138CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nissen JD, Pajecka K, Stridh MH, Skytt DM, Waagepetersen HS (2015) Dysfunctional TCA-cycle metabolism in glutamate dehydrogenase deficient astrocytes. Glia 63(12):2313–2326CrossRefPubMedGoogle Scholar
  65. Olney JW, de Gubareff T, Collins JF (1980) Stereospecificity of the gliotoxic and anti-neurotoxic actions of alpha-aminoadipate. Neurosci Lett 19(3):277–282CrossRefPubMedGoogle Scholar
  66. Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37(12):1951–1962CrossRefPubMedGoogle Scholar
  67. Pedersen OO, Karlsen RL (1979) Destruction of Muller cells in the adult rat by intravitreal injection of D,L-alpha-aminoadipic acid. An electron microscopic study Experimental eye research 28(5):569–575CrossRefPubMedGoogle Scholar
  68. Petito CK, Chung MC, Verkhovsky LM, Cooper AJ (1992) Brain glutamine synthetase increases following cerebral ischemia in the rat. Brain Res 569(2):275–280CrossRefPubMedGoogle Scholar
  69. Plaitakis A, Zaganas I (2001) Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res 66(5):899–908CrossRefPubMedGoogle Scholar
  70. Przyrembel H, Bachmann D, Lombeck I, Becker K, Wendel U, Wadman SK, Bremer HJ (1975) Alpha-ketoadipic aciduria, a new inborn error of lysine metabolism; biochemical studies. Clinica chimica acta; international journal of clinical chemistry 58(3):257–269CrossRefPubMedGoogle Scholar
  71. Rao MS, Reddy JK (1987) Peroxisome proliferation and hepatocarcinogenesis. Carcinogenesis 8(5):631–636CrossRefPubMedGoogle Scholar
  72. Rao Y, Bodmer R, Jan LY, Jan YN (1992) The big brain gene of Drosophila functions to control the number of neuronal precursors in the peripheral nervous system. Development 116(1):31–40PubMedGoogle Scholar
  73. Reiter RJ, Tan DX, Manchester LC, Qi W (2001) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 34(2):237–256CrossRefPubMedGoogle Scholar
  74. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363CrossRefPubMedGoogle Scholar
  75. Rosenthal RE, Hamud F, Fiskum G, Varghese PJ, Sharpe S (1987) Cerebral ischemia and reperfusion—prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab 7(6):752–758CrossRefPubMedGoogle Scholar
  76. Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clinica chimica acta; international journal of clinical chemistry 228(1):35–51CrossRefPubMedGoogle Scholar
  77. Saito A, Castilho RF (2010) Inhibitory effects of adenine nucleotides on brain mitochondrial permeability transition. Neurochem Res 35(11):1667–1674CrossRefPubMedGoogle Scholar
  78. Sauer SW, Okun JG, Fricker G, Mahringer A, Muller I, Crnic LR, Muhlhausen C, Hoffmann GF, Horster F, Goodman SI, Harding CO, Koeller DM, Kolker S (2006) Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem 97(3):899–910CrossRefPubMedGoogle Scholar
  79. Schapira AHV, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55(6):2142–2145CrossRefPubMedGoogle Scholar
  80. Stiles AR, Venturoni L, Mucci G, Elbalalesy N, Woontner M, Goodman S, Abdenur JE (2016) New cases of DHTKD1 mutations in patients with 2-ketoadipic aciduria. JIMD Rep 25:15–19CrossRefPubMedGoogle Scholar
  81. Takechi T, Okada T, Wakiguchi H, Morita H, Kurashige T, Sugahara K, Kodama H (1993) Identification of N-acetyl-alpha-aminoadipic acid in the urine of a patient with alpha-aminoadipic and alpha-ketoadipic aciduria. J Inherit Metab Dis 16(1):119–126CrossRefPubMedGoogle Scholar
  82. Tarla MR, Ramalho F, Ramalho LN, Silva Tde C, Brandao DF, Ferreira J, Silva Ode C, Zucoloto S (2006) Cellular aspects of liver regeneration. Acta cirurgica brasileira 21(Suppl 1):63–66CrossRefPubMedGoogle Scholar
  83. Trotti D, Rossi D, Gjesdal O, Levy LM, Racagni G, Danbolt NC, Volterra A (1996) Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem 271(11):5976–5979CrossRefPubMedGoogle Scholar
  84. Trotti D, Danbolt NC, Volterra A (1998) Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 19(8):328–334CrossRefPubMedGoogle Scholar
  85. Tsakiris S, Deliconstantinos G (1984) Influence of phosphatidylserine on (Na+,K+)-stimulated ATPase and acetylcholinesterase activities of dog brain synaptosomal plasma membranes. The Biochemical journal 220(1):301–307CrossRefPubMedPubMedCentralGoogle Scholar
  86. Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1997) Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. Eur J Neurosci 9(8):1646–1655CrossRefPubMedGoogle Scholar
  87. Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. The Journal of neuroscience : the official journal of the Society for Neuroscience 14(5 Pt 1):2924–2932Google Scholar
  88. Wilcken B, Smith A, Brown DA (1980) Urine screening for aminoacidopathies: is it beneficial? Results of a long-term follow-up of cases detected bny screening one millon babies. J Pediatr 97(3):492–497CrossRefPubMedGoogle Scholar
  89. Zhang X, Vincent AS, Halliwell B, Wong KP (2004) A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J Biol Chem 279(41):43035–43045CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Janaína Camacho da Silva
    • 1
  • Alexandre Umpierrez Amaral
    • 1
    • 2
  • Cristiane Cecatto
    • 1
  • Alessandro Wajner
    • 1
  • Kálita dos Santos Godoy
    • 1
  • Rafael Teixeira Ribeiro
    • 1
  • Aline de Mello Gonçalves
    • 1
  • Ângela Zanatta
    • 1
  • Mateus Struecker da Rosa
    • 1
  • Samanta Oliveira Loureiro
    • 1
  • Carmen Regla Vargas
    • 3
    • 4
  • Guilhian Leipnitz
    • 1
    • 5
  • Diogo Onofre Gomes de Souza
    • 1
    • 5
  • Moacir Wajner
    • 1
    • 3
    • 5
  1. 1.Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Departamento de Ciências BiológicasUniversidade Regional Integrada do Alto Uruguai e das MissõesErechimBrazil
  3. 3.Serviço de Genética MédicaHospital de Clínicas de Porto AlegrePorto AlegreBrazil
  4. 4.Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  5. 5.Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations