Advertisement

Neurotoxicity Research

, Volume 32, Issue 2, pp 264–275 | Cite as

Disruption of Energy Transfer and Redox Status by Sulfite in Hippocampus, Striatum, and Cerebellum of Developing Rats

  • Leonardo de Moura Alvorcem
  • Mateus Struecker da Rosa
  • Nícolas Manzke Glänzel
  • Belisa Parmeggiani
  • Mateus Grings
  • Felipe Schmitz
  • Angela T.S. Wyse
  • Moacir Wajner
  • Guilhian Leipnitz
ORIGINAL ARTICLE

Abstract

Patients with sulfite oxidase (SO) deficiency present severe brain abnormalities, whose pathophysiology is not yet elucidated. We evaluated the effects of sulfite and thiosulfate, metabolites accumulated in SO deficiency, on creatine kinase (CK) activity, mitochondrial respiration and redox status in hippocampus, striatum and cerebellum of developing rats. Our in vitro results showed that sulfite and thiosulfate decreased CK activity, whereas sulfite also increased malondialdehyde (MDA) levels in all brain structures evaluated. Sulfite further diminished mitochondrial respiration and increased DCFH oxidation and hydrogen peroxide production in hippocampus. Sulfite-induced CK activity decrease was prevented by melatonin (MEL), resveratrol (RSV), and dithiothreitol while increase of MDA levels was prevented by MEL and RSV. Regarding the antioxidant system, sulfite increased glutathione concentrations in hippocampus and striatum. In addition, sulfite decreased the activities of glutathione peroxidase in all brain structures, of glutathione S-transferase in hippocampus and cerebellum, and of glutathione reductase in cerebellum. In vivo experiments performed with intrahippocampal administration of sulfite demonstrated that this metabolite increased superoxide dismutase activity without altering other biochemical parameters in rat hippocampus. Our data suggest that impairment of energy metabolism and redox status may be important pathomechanisms involved in brain damage observed in individuals with SO deficiency.

Keywords

Sulfite Thiosulfate Redox status Energy transfer Brain 

Notes

Acknowledgements

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Programa de Apoio a Núcleos de Excelência (PRONEX II), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Pró-Reitoria de Pesquisa/Universidade Federal do Rio Grande do Sul (PROPESQ/UFRGS), Financiadora de estudos e projetos (FINEP), Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00 and Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN).

Compliance with Ethical Standards

Ethical Approval

The experimental protocol was approved by the Ethics Committee for Animal Research of the UFRGS, Porto Alegre, Brazil, and followed the “National Institutes of Health Guide for the Care and Use of Laboratory Animals” (NIH Publications No. 80–23, revised 1978)

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Aksenov MY, Markesbery WR (2001) Change in thiol content and expression of glutathione redox system gene in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145CrossRefPubMedGoogle Scholar
  2. Arstall MA, Bailey C, Gross WL, Bak M, Balligand JL, Kelly RA (1998) Reversible S-nitrosation of creatine kinase by nitric oxide in adult rat ventricular myocytes. J Mol Cell Cardiol 30:979–988CrossRefPubMedGoogle Scholar
  3. Baker MT, Dehring DJ, Gregerson MS (2002) Sulfite supported lipid peroxidation in propofol emulsions. Anesthesiology 97:1162–1167CrossRefPubMedGoogle Scholar
  4. Basheer SN, Waters PJ, Lam CW, Acquaviva-Bourdain C, Hendson G, Poskitt K, Hukin J (2007) Isolated sulfite oxidase deficiency in the newborn: lactic acidaemia and leukoencephalopathy. Neuropediatrics 38:38–41CrossRefPubMedGoogle Scholar
  5. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506CrossRefPubMedGoogle Scholar
  6. Bellaver B, Bobermin LD, Souza DG, Rodrigues MD, de Assis AM, Wajner M, Gonçalves CA, Souza DO, Quincozes-Santos A (2016) Signaling mechanisms underlying the glioprotective effects of resveratrol against mitochondrial dysfunction. Biochim Biophys Acta 1862(9):1827–1838CrossRefPubMedGoogle Scholar
  7. Bindu PS, Christopher R, Mahadevan A, Bharath RD (2011) Clinical and imaging observations in isolated sulfite oxidase deficiency. J Child Neurol 26:1036–1040CrossRefPubMedGoogle Scholar
  8. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352PubMedGoogle Scholar
  9. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490CrossRefPubMedGoogle Scholar
  10. Chan KY, Li CK, Lai CK, Ng SF, Chan AY (2002) Infantile isolated sulphite oxidase deficiency in a Chinese family: a rare neurodegenerative disorder. Hong Kong Med J 8:279–282PubMedGoogle Scholar
  11. Chiarani F, Bavaresco CS, Dutra-Filho CS, Netto CA, Wyse AT (2008) Sulfite increases lipoperoxidation and decreases the activity of catalase in brain of rats. Metab Brain Dis 23:123–132CrossRefPubMedGoogle Scholar
  12. da Silva CG, Bueno AR, Schuck PF, Leipnitz G, Ribeiro CA, Rosa RB, Dutra Filho CS, Wyse AT, Wannmacher CM, Wajner M (2004) Inhibition of creatine kinase activity from rat cerebral cortex by D-2-hydroxyglutaric acid in vitro. Neurochem Int 44(1):45–52CrossRefPubMedGoogle Scholar
  13. de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM (2016) Resveratrol and the mitochondria: from triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta 1860(4):727–745CrossRefPubMedGoogle Scholar
  14. Derin N, Yargiçoğlu P, Aslan M, Elmas O, Agar A, Aicigüzel Y (2006) The effect of sulfite and chronic restraint stress on brain lipid peroxidation and anti-oxidant enzyme activities. Toxicol Ind Health 22:233–240CrossRefPubMedGoogle Scholar
  15. Derin N, Akpinar D, Yargicoglu P, Agar A, Aslan M (2009) Effect of alpha-lipoic acid on visual evoked potentials in rats exposed to sulfite. Neurotoxicol Teratol 31:34–39CrossRefPubMedGoogle Scholar
  16. Du F, Cooper A, Lukas SE, Cohen BM, Ongur D (2013) Creatine kinase and ATP synthase reaction rates in human frontal lobe measured by (31)P magnetization transfer spectroscopy at 4T. Magn Reson Imaging 31:102–108CrossRefPubMedGoogle Scholar
  17. Dublin AB, Hald JK, Wootton-Gorges SL (2002) Isolated sulfite oxidase deficiency: MR imaging features. AJNR Am J Neuroradiol 23(3):484–485PubMedGoogle Scholar
  18. Edwards MC, Johnson JL, Marriage B, Graf TN, Coyne KE, Rajagopalan KV, MacDonald IM (1999) Isolated sulfite oxidase deficiency: review of two cases in one family. Ophthalmology 106:1957–1961CrossRefPubMedGoogle Scholar
  19. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421CrossRefPubMedGoogle Scholar
  20. Galano A (2011) On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals. Phys Chem 13:7178–7188Google Scholar
  21. Grings M, Moura AP, Parmeggiani B, Marcowich GF, Amaral AU, de Souza Wyse AT, Wajner M, Leipnitz G (2013) Disturbance of brain energy and redox homeostasis provoked by sulfite and thiosulfate: potential pathomechanisms involved in the neuropathology of sulfite oxidase deficiency. Gene 531(2):191–198CrossRefPubMedGoogle Scholar
  22. Grings M, Moura AP, Amaral AU, Parmeggiani B, Gasparotto J, Moreira JC, Gelain DP, Wyse AT, Wajner M, Leipnitz G (2014) Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification. Biochim Biophys Acta 1842(9):1413–1422CrossRefPubMedGoogle Scholar
  23. Grings M, Moura AP, Parmeggiani B, Motta MM, Boldrini RM, August PM, Matté C, Wyse AT, Wajner M, Leipnitz G (2016) Higher susceptibility of cerebral cortex and striatum to sulfite neurotoxicity in sulfite oxidase-deficient rats. Biochim Biophys Acta 1862(11):2063–2074CrossRefPubMedGoogle Scholar
  24. Gunnison AF, Sellakumar A, Currie D, Snyder EA (1987) Distribution, metabolism and toxicity of inhaled sulfur dioxide and endogenously generated sulfite in the respiratory tract of normal and sulfite oxidase-deficient rats. J Toxicol Environ Health 21(1–2):141–162CrossRefPubMedGoogle Scholar
  25. Halliwell B, Gutteridge JMC (2007) Measurement of reactive species, 4th edn. Oxford University Press, Oxford, pp 268–337Google Scholar
  26. Herken EN, Kocamaz E, Erel O, Celik H, Kucukatay V (2009) Effect of sulfite treatment on total antioxidant capacity, total oxidant status, lipid hydroperoxide, and total free sulfydryl groups contents in normal and sulfite oxidase-deficient rat plasma. Cell Biol Toxicol 25:355–362CrossRefPubMedGoogle Scholar
  27. Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603CrossRefPubMedGoogle Scholar
  28. Johnson JL, Duran M (2001) Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Scriver CR, Valle D, Sly WS (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3181–3217Google Scholar
  29. Konorev EA, Hogg N, Kalyanaraman B (1998) Rapid and irreversible inhibition of creatine kinase by peroxynitrite. FEBS Lett 427:171–174CrossRefPubMedGoogle Scholar
  30. Küçükatay V, Savcioğlu F, Hacioğlu G, Yargiçoğlu P, Ağar A (2005) Effect of sulfite on cognitive function in normal and sulfite oxidase deficient rats. Neurotoxicol Teratol 27:47–54CrossRefPubMedGoogle Scholar
  31. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231CrossRefPubMedGoogle Scholar
  32. Li C, Sun S, Park D, Jeong HO, Chung HY, Liu XX, Zhou HM (2011) Hydrogen peroxide targets the cysteine at the active site and irreversibly inactivates creatine kinase. Int J Biol Macromol 49:910–916CrossRefPubMedGoogle Scholar
  33. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  34. Makrecka-Kuka M, Krumschnabel G, Gnaiger E (2015) High-resolution Respirometry for simultaneous measurement of oxygen and hydrogen peroxide fluxes in Permeabilized cells, tissue homogenate and isolated mitochondria. Biomol Ther 5(3):1319–1338Google Scholar
  35. Mannervik B, Guthenberg C (1981) Glutathione transferase (human placenta). Methods Enzymol 77:231–235CrossRefPubMedGoogle Scholar
  36. Marklund SL (1985) Product of extracellular-superoxide dismutase catalysis. FEBS Lett 184(2):237–239CrossRefPubMedGoogle Scholar
  37. Miller E, Morel A, Saso L, Saluk J (2015) Melatonin redox activity. Its potential clinical applications in neurodegenerative disorders. Curr Top Med Chem 15(2):163–169CrossRefPubMedGoogle Scholar
  38. Mottley C, Mason RP (1988) Sulfate anion free radical formation by the peroxidation of (bi)sulfite and its reaction with hydroxyl radical scavengers. Arch Biochem Biophys 267:681–689CrossRefPubMedGoogle Scholar
  39. Ngu LH, Afroze B, Chen BC, Affandi O, Zabedah MY (2009) Molybdenum cofactor deficiency in a Malaysian child. Singap Med J 50:365–367Google Scholar
  40. Niknahad H, O’Brien PJ (2008) Mechanism of sulfite cytotoxicity in isolated rat hepatocytes. Chem Biol Interact 174(3):147–154CrossRefPubMedGoogle Scholar
  41. Ozturk OH, Oktar S, Aydin M, Kucukatay V (2010) Effect of sulfite on antioxidant enzymes and lipid peroxidation in normal and sulfite oxidase-deficient rat erythrocytes. J Physiol Biochem 66:205–212CrossRefPubMedGoogle Scholar
  42. Parmeggiani B, Moura AP, Grings M, Bumbel AP, de Moura AL, Tauana Pletsch J, Fernandes CG, Wyse AT, Wajner M, Leipnitz G (2015) In vitro evidence that sulfite impairs glutamatergic neurotransmission and inhibits glutathione metabolism-related enzymes in rat cerebral cortex. Int J Dev Neurosci 42:68–75CrossRefPubMedGoogle Scholar
  43. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, San DiegoGoogle Scholar
  44. Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ (2015) Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 146-148:28–41CrossRefPubMedGoogle Scholar
  45. Reiter RJ, Tan DX, Manchester LC, Qi W (2001) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 34:237–256CrossRefPubMedGoogle Scholar
  46. Robinson HC, Pasternak CA (1964) The isolation of S-sulphoglutathione from the small intestine of the rat. Biochem J 93(3):487–492CrossRefPubMedPubMedCentralGoogle Scholar
  47. Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460(7257):839–847CrossRefPubMedGoogle Scholar
  48. Springer JE, Azbill RD, Carlson SL (1998) A rapid and sensitive assay for measuring mitochondrial metabolic activity in isolated neural tissue. Brain Res Protocol 2:259–263CrossRefGoogle Scholar
  49. Stachowiak O, Dolder M, Wallimann T, Richter C (1998) Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J Biol Chem 273:16694–16699CrossRefPubMedGoogle Scholar
  50. Tamura H, Takasaki A, Taketani T, Tanabe M, Kizuka F, Lee L, Tamura I, Maekawa R, Asada H, Yamagata Y, Sugino N (2013) Melatonin as a free radical scavenger in the ovarian follicle. Endocr J 60:1–13CrossRefPubMedGoogle Scholar
  51. Tan WH, Eichler FS, Hoda S, Lee MS, Baris H, Hanley CA, Grant PE, Krishnamoorthy KS, Shih VE (2005) Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 116:757–766CrossRefPubMedGoogle Scholar
  52. Taylor SL, Higley NA, Bush RK (1986) Sulfites in foods: uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity. Adv Food Res 30:1–76CrossRefPubMedGoogle Scholar
  53. Vandevijvere S, De Vriese S, Huybrechts I, Moreau M, Van Oyen H (2010) Overall and within-food group diversity are associated with dietary quality in Belgium. Public Health Nutr 13(12):1965–1973CrossRefPubMedGoogle Scholar
  54. Vincent AS, Lim BG, Tan J, Whiteman M, Cheung NS, Halliwell B, Wong KP (2004) Sulfite-mediated oxidative stress in kidney cells. Kidney Int 65:393–402CrossRefPubMedGoogle Scholar
  55. Wallimann T, Dolder M, Schlattner U, Eder M, Hornemann T, Kraft T, Stolz M (1998) Creatine kinase: an enzyme with a central role in cellular energy metabolism. MAGMA 6:116–119CrossRefPubMedGoogle Scholar
  56. Wang PF, McLeish MJ, Kneen MM, Lee G, Kenyon GL (2001) An unusually low pK(a) for Cys282 in the active site of human muscle creatine kinase. Biochemistry-US 40:11698–11705CrossRefGoogle Scholar
  57. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–332CrossRefPubMedGoogle Scholar
  58. Wendt S, Schlattner U, Wallimann T (2003) Differential effects of peroxynitrite on human mitochondrial creatine kinase isoenzymes. Inactivation, octamer destabilization, and identification of involved residues. J Biol Chem 278:1125–1130CrossRefPubMedGoogle Scholar
  59. Zhang X, Vincent AS, Halliwell B, Wong KP (2004) A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J Biol Chem 279:43035–43045CrossRefPubMedGoogle Scholar
  60. Zaki MS, Selim L, El-Bassyouni HT, Issa MY, Mahmoud I, Ismail S, Girgis M, Sadek AA, Gleeson JG, Abdel Hamid MS (2016) Molybdenum cofactor and isolated sulphite oxidase deficiencies: clinical and molecular spectrum among Egyptian patients. Eur J Paediatr Neurol 20(5):714–722CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Leonardo de Moura Alvorcem
    • 1
  • Mateus Struecker da Rosa
    • 1
  • Nícolas Manzke Glänzel
    • 1
  • Belisa Parmeggiani
    • 1
  • Mateus Grings
    • 1
  • Felipe Schmitz
    • 1
  • Angela T.S. Wyse
    • 1
    • 2
  • Moacir Wajner
    • 1
    • 2
    • 3
  • Guilhian Leipnitz
    • 1
    • 2
  1. 1.Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal de Rio Grande do SulPorto AlegreBrazil
  3. 3.Serviço de Genética MédicaHospital de Clínicas de Porto AlegrePorto AlegreBrazil

Personalised recommendations