Neurotoxicity Research

, Volume 32, Issue 1, pp 14–16 | Cite as

TREM1: A Potential Therapeutic Target For Alzheimer’s Disease

COMMENTARY

Abstract

Immunity has been suggested to play crucial roles in the pathogenesis of Alzheimer’s disease (AD). The triggering receptor expressed on myeloid cells-1 (TREM1), a member of the immunoglobulin superfamily of receptors, is widely expressed in monocytes and microglia. On the other hand, TREM1 variant, rs6910730G, is reported to associate with AD pathology; however, the exact mechanism is not yet clear. Since phagocytosis of Aβ by monocytes enhances Aβ clearance and attenuates AD pathogenesis, Jiang et al. has investigated if TREM1 can modulate Aβ phagocytosis and degradation by monocytes in the central nervous system (CNS). They found that TREM1 facilitates microglial Aβ phagocytosis while rs6910730G impairs this function and exacerbates AD pathogenesis. These findings suggest that TREM1 can be implemented investigated as a potential therapeutic target in AD.

Keywords

TREM1 rs6910730G Microglia Phagocytosis Amyloid beta Alzheimer’s disease 

References

  1. Bailey CC, DeVaux LB, Farzan M (2015) The triggering receptor expressed on myeloid cells 2 binds apolipoprotein E. J Biol Chem 290:26033–26042CrossRefPubMedPubMedCentralGoogle Scholar
  2. Benitez BA, Cooper B, Pastor P, Jin SC, Lorenzo E, Cervantes S et al (2013) TREM2 is associated with the risk of Alzheimer’s disease in Spanish population. Neurobiol Aging 34(1711):e1715–e1717Google Scholar
  3. Bouchon A, Dietrich J, Colonna M (2000) Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 164:4991–4995CrossRefPubMedGoogle Scholar
  4. Chan G, White CC, Winn PA, Cimpean M, Replogle JM, Glick LR et al (2015) CD33 modulates TREM2: convergence of Alzheimer loci. Nat Neurosci 18:1556–1558CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cuyvers E, Bettens K, Philtjens S, Van Langenhove T, Gijselinck I, van der Zee J et al (2014) Investigating the role of rare heterozygous TREM2 variants in Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging 35(726):e711–e729Google Scholar
  6. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E et al (2003) RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9:907–913CrossRefPubMedGoogle Scholar
  7. Franco R, Fernandez-Suarez D (2015) Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 131:65–86CrossRefPubMedGoogle Scholar
  8. Ghersi-Egea JF, Gorevic PD, Ghiso J, Frangione B, Patlak CS, Fenstermacher JD (1996) Fate of cerebrospinal fluid-borne amyloid beta-peptide: rapid clearance into blood and appreciable accumulation by cerebral arteries. J Neurochem 67:880–883CrossRefPubMedGoogle Scholar
  9. Guerreiro R, Hardy J (2013) TREM2 and neurodegenerative disease. N Engl J Med 369:1569–1570PubMedGoogle Scholar
  10. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356CrossRefPubMedGoogle Scholar
  11. Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E et al (2000) Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 6:143–150CrossRefPubMedGoogle Scholar
  12. Jiang T, Tan L, Chen Q, Tan MS, Zhou JS, Zhu XC et al (2016a) A rare coding variant in TREM2 increases risk for Alzheimer’s disease in Han Chinese. Neurobiol Aging 42(217):e211–e213Google Scholar
  13. Jiang T, Zhang YD, Gao Q, Zhou JS, Zhu XC, Lu H, et al. (2016b). TREM1 facilitates microglial phagocytosis of amyloid beta. Acta neuropathologicaGoogle Scholar
  14. Jin SC, Benitez BA, Karch CM, Cooper B, Skorupa T, Carrell D et al (2014) Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum Mol Genet 23:5838–5846CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116CrossRefPubMedGoogle Scholar
  16. Kadiu I, Glanzer JG, Kipnis J, Gendelman HE, Thomas MP (2005) Mononuclear phagocytes in the pathogenesis of neurodegenerative diseases. Neurotox Res 8:25–50CrossRefPubMedGoogle Scholar
  17. Klesney-Tait J, Turnbull IR, Colonna M (2006) The TREM receptor family and signal integration. Nat Immunol 7:1266–1273CrossRefPubMedGoogle Scholar
  18. Malm T, Koistinaho M, Muona A, Magga J, Koistinaho J (2010) The role and therapeutic potential of monocytic cells in Alzheimer’s disease. Glia 58:889–900PubMedGoogle Scholar
  19. Mandrekar S, Jiang Q, Lee CY, Koenigsknecht-Talboo J, Holtzman DM, Landreth GE (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci 29:4252–4262CrossRefPubMedPubMedCentralGoogle Scholar
  20. Meda L, Baron P, Scarlato G (2001) Glial activation in Alzheimer’s disease: the role of Abeta and its associated proteins. Neurobiol Aging 22:885–893CrossRefPubMedGoogle Scholar
  21. Pottier C, Wallon D, Rousseau S, Rovelet-Lecrux A, Richard AC, Rollin-Sillaire A et al (2013) TREM2 R47H variant as a risk factor for early-onset Alzheimer’s disease. J Alzheimers Dis 35:45–49PubMedGoogle Scholar
  22. Replogle JM, Chan G, White CC, Raj T, Winn PA, Evans DA et al (2015) A TREM1 variant alters the accumulation of Alzheimer-related amyloid pathology. Ann Neurol 77:469–477CrossRefPubMedPubMedCentralGoogle Scholar
  23. Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B et al (2000) Clearance of Alzheimer’s amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106:1489–1499CrossRefPubMedPubMedCentralGoogle Scholar
  24. Swerdlow RH (2012) Alzheimer’s disease pathologic cascades: who comes first, what drives what. Neurotox Res 22:182–194CrossRefPubMedGoogle Scholar
  25. Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160:1061–1071CrossRefPubMedPubMedCentralGoogle Scholar
  26. Xiang Y, Bu XL, Liu YH, Zhu C, Shen LL, Jiao SS et al (2015) Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol 130:487–499CrossRefPubMedPubMedCentralGoogle Scholar
  27. Yuan P, Condello C, Keene CD, Wang Y, Bird TD, Paul SM et al (2016) TREM2 Haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 90:724–739CrossRefPubMedPubMedCentralGoogle Scholar
  28. Zlokovic BV (2004) Clearing amyloid through the blood-brain barrier. J Neurochem 89:807–811CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Cell Biology, Physiology & Neuroscience, Skirball Institute of Bimolecular MedicineNew York University Langone Medical CenterNew YorkUSA

Personalised recommendations