Advertisement

Neurotoxicity Research

, Volume 26, Issue 4, pp 307–316 | Cite as

Protective Effects of Cannabidiol Against Hippocampal Cell Death and Cognitive Impairment Induced by Bilateral Common Carotid Artery Occlusion in Mice

  • Angélica Pupin Schiavon
  • Lígia Mendes Soares
  • Jéssica Mendes Bonato
  • Humberto Milani
  • Francisco Silveira Guimarães
  • Rúbia Maria Weffort de OliveiraEmail author
Original Article

Abstract

The present study investigated whether cannabidiol (CBD), a major non-psychoactive constituent of marijuana, protects against hippocampal neurodegeneration and cognitive deficits induced by brain ischemia in adult mice. Male Swiss mice were subjected to a 17 min of bilateral common carotid artery occlusion (BCCAO) and tested in the Morris water maze 7 days later. CBD (3, 10, and 30 mg/kg) was administered 30 min before and 3, 24, and 48 h after BCCAO. After behavioral testing, the brains were removed and processed to evaluate hippocampal cell survival and degeneration using Nissl staining and FluoroJade C histochemistry, respectively. Astroglial response was examined using immunohistochemistry for glial fibrillary acidic protein (GFAP). CBD (3–30 mg/kg) improved spatial learning performance in BCCAO mice. The Nissl and FJC staining results showed a decrease in hippocampal neurodegeneration after CBD (10 and 30 mg/kg) treatment. GFAP immunoreactivity was also decreased in ischemic mice treated with CBD (30 mg/kg). These findings suggest a protective effect of CBD on neuronal death induced by ischemia and indicate that CBD might exert beneficial therapeutic effects in brain ischemia. The mechanisms that underlie the neuroprotective effects of CBD in BCCAO mice might involve the inhibition of reactive astrogliosis.

Keywords

Cannabidiol Morris water maze Hippocampus Bilateral common carotid artery occlusion Mice 

Notes

Acknowledgments

The authors thank Marco Alberto Trombelli for his technical support. This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), FAPESP, State University of Maringá and Fundação Araucária.

Conflict of interest

The authors have no conflict of interest.

References

  1. Anderson CA, Arciniegas DB (2010) Cognitive sequelae of hypoxic-ischemic brain injury: a review. Neurorehabilitation 26(1):47–63PubMedGoogle Scholar
  2. Auriel E, Bornstein NM (2010) Neuroprotection in acute ischemic stroke-current status. J Cell Mol Med 4(9):2200–2202CrossRefGoogle Scholar
  3. Bachevalier J, Meunier M (1996) Cerebral ischemia: are the memory deficits associated with hippocampal cell loss? Hippocampus 6(5):553–560PubMedCrossRefGoogle Scholar
  4. Blum S, Luchsinger JA, Manly JJ, Schupf N, Stern Y, Brown TR, DeCarli C, Small SA, Mayeux R, Brickman AM (2012) Memory after silent stroke: hippocampus and infarcts both matter. Neurology 78(1):38–46PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bora KS, Arora S, Shri R (2011) Role of Ocimum basilicum L. in prevention of ischemia and reperfusion-induced cerebral damage, and motor dysfunctions in mice brain. J Ethnopharmacol 137(3):1360–1365PubMedCrossRefGoogle Scholar
  6. Braida D, Pegorini S, Arcidiacono MV, Consalez GG, Croci L, Sala M (2003) Post-ischemic treatment with cannabidiol prevents electroencephalographic flattening, hyperlocomotion and neuronal injury in gerbils. Neurosci Lett 346(1–2):61–64PubMedCrossRefGoogle Scholar
  7. Campos AC, Moreira FA, Gomes FV, Del Bel EA, Guimarães FS (2012) Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philos Trans R Soc Lond B 367(1607):3364–3378CrossRefGoogle Scholar
  8. Campos AC, Ortega Z, Palazuelos J, Fogaça MV, Aguiar DC, Díaz-Alonso J, Ortega-Gutiérrez S, Vázquez-Villa H, Moreira FA, Guzmán M, Galve-Roperh I, Guimarães FS (2013) The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system. Int J Neuropsychopharmacol 16(6):1407–1419. doi: 10.1017/S1461145712001502 PubMedCrossRefGoogle Scholar
  9. Carty ML, Wixey JA, Kesby J, Reinebrant HE, Colditz PB, Gobe G (2010) Long-term losses of amygdala corticotropin-releasing factor neurons are associated with behavioural outcomes following neonatal hypoxia–ischemia. Behav Brain Res 208:609–618PubMedCrossRefGoogle Scholar
  10. Caruana DA, Nesbitt C, Mumby DG, Chapman CA (2008) Seizure activity in the rat hippocampus, perirhinal and prefrontal cortex associated with transient global cerebral ischemia. J Neural Transm 115(3):401–411PubMedCrossRefGoogle Scholar
  11. Castillo A, Tolón MR, Fernández-Ruiz J, Romero J, Martinez-Orgado J (2010) The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB(2) and adenosine receptors. Neurobiol Dis 37(2):434–440PubMedCrossRefGoogle Scholar
  12. Cheung WM, Wang CK, Kuo JS, Lin TN (1999) Changes in the level of glial fibrillary acidic protein (GFAP) after mild and severe focal cerebral ischemia. Chin J Physiol 42(4):227–235PubMedGoogle Scholar
  13. Colangelo AM, Cirillo G, Lavitrano ML, Alberghina L, Papa M (2012) Targeting reactive astrogliosis by novel biotechnological strategies. Biotechnol Adv 30(1):261–271PubMedCrossRefGoogle Scholar
  14. Corbett D, Crooks P (1997) Ischemic preconditioning: a long term survival study using behavioural and histological endpoints. Brain Res. 760(1–2):129–136PubMedCrossRefGoogle Scholar
  15. Corbett D, Nurse S (1998) The problem of assessing effective neuroprotection in experimental cerebral ischemia. Prog Neurobiol. 54(5):531–548PubMedCrossRefGoogle Scholar
  16. de la Tremblaye PB, Plamondon H (2011) Impaired conditioned emotional response and object recognition are concomitant to neuronal damage in the amygdala and perirhinal cortex in middle-aged ischemic rats. Behav Brain Res 219(2):227–233PubMedCrossRefGoogle Scholar
  17. Duan YL, Wang SY, Zeng QW, Su DS, Li W, Wang XR, Zhao Z (2011) Astroglial reaction to delta opioid peptide [D-Ala2, D-Leu5] enkephalin confers neuroprotection against global ischemia in the adult rat hippocampus. Neuroscience 192:81–90PubMedCrossRefGoogle Scholar
  18. Esposito G, Scuderi C, Valenza M, Togna GI, Latina V, De Filippis D, Cipriano M, Carratù MR, Iuvone T, Steardo L (2011) Cannabidiol reduces Aβ-induced neuroinflammation and promotes hippocampal neurogenesis through PPARγ involvement. PLoS One 6(12):e28668PubMedCrossRefPubMedCentralGoogle Scholar
  19. Fernández-Ruiz J, Sagredo O, Pazos MR, García C, Pertwee R, Mechoulam R, Martínez-Orgado J (2013) Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? Br J Clin Pharmacol 75(2):323–333PubMedCrossRefPubMedCentralGoogle Scholar
  20. Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates, 2nd edn. Editora Academic Press, San DiegoGoogle Scholar
  21. Garcia C, Palomo-Garo C, Garcia-Arencibia M, Ramos J, Pertwee R, Fernández-Ruiz J (2011) Symptom-relieving and neuroprotective effects of the phytocannabinoid D9-THCV in animal modeks of Parkinson’s disease. Br J Pharmacol 164(7):1495–1506CrossRefGoogle Scholar
  22. Harvey BS, Ohlsson KS, Mååg JL, Musgrave IF, Smid SD (2012) Contrasting protective effects of cannabinoids against oxidative stress and amyloid-β evoked neurotoxicity in vitro. Neurotoxicology 33(1):138–146PubMedCrossRefGoogle Scholar
  23. Hayakawa K, Mishima K, Irie K, Hazekawa M, Mishima S, Fujioka M, Orito K, Egashira N, Katsurabayashi S, Takasaki K, Iwasaki K, Fujiwara M (2008) Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism. Neuropharmacology 55(8):1280–1286PubMedCrossRefGoogle Scholar
  24. Hayakawa K, Irie K, Sano K, Watanabe T, Higuchi S, Enoki M, Nakano T, Harada K, Ishikane S, Ikeda T, Fujioka M, Orito K, Iwasaki K, Mishima K, Fujiwara M (2009) Therapeutic time window of cannabidiol treatment on delayed ischemic damage via high-mobility group box1-inhibiting mechanism. Biol Pharm Bull 32(9):1538–1544PubMedCrossRefGoogle Scholar
  25. Iuvone T, Esposito G, Esposito R, Santamaria R, Di Rosa M, Izzo AA (2004) Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 89(1):134–141PubMedCrossRefGoogle Scholar
  26. Kartsounis LD, Rudge P, Stevens JM (1995) Bilateral lesions of CA1 and CA2 fields of the hippocampus are sufficient to cause a severe amnesic syndrome in humans. J Neurol Neurosurg Psychiatry 59(1):95–98PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kindy MS, Bhat AN, Bhat NR (1992) Transient ischemia stimulates glial fibrillary acid protein and vimentin gene expression in the gerbil neocortex, striatum and hippocampus. Brain Res Mol Brain Res 13(3):199–206PubMedCrossRefGoogle Scholar
  28. Kumaran D, Udayabanu M, Kumar M, Aneja R, Katyal A (2008) Involvement of angiotensin converting enzyme in cerebral hypoperfusion induced anterograde memory impairment and cholinergic dysfunction in rats. Neuroscience 155(3):626–639PubMedCrossRefGoogle Scholar
  29. Lafuente H, Alvarez FJ, Pazos MR, Alvarez A, Rey-Santano MC, Mielgo V, Murgia-Esteve X, Hilario E, Martinez-Orgado J (2011) Cannabidiol reduces brain damage and improves functional recovery after acute hypoxia–ischemia in newborn pigs. Pediatr Res 70(3):272–277PubMedCrossRefGoogle Scholar
  30. Lee TH, Kato H, Kogure K, Itoyama Y (1996) Temporal profile of nerve growth factor like immunoreactivity after transient focal cerebral ischemia in rats (1996). Brain Res 713:199–210PubMedCrossRefGoogle Scholar
  31. Mao X, Yin W, Liu M, Ye M, Liu P, Liu J, Xu S, Pi R (2011) Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats. Brain Res 1385:275–280PubMedCrossRefGoogle Scholar
  32. Mateen FJ, Josephs KA, Trenerry MR, Felmlee-Devine MD, Weaver AL, Carone M, White RD (2011) Long-term cognitive outcomes following out-of-hospital cardiac arrest: a population-based study. Neurology 77(15):1438–1445PubMedCrossRefGoogle Scholar
  33. Mechoulam R, Shohami E (2007) Endocannabinoids and traumatic brain injury. Mol Neurobiol 36(1):68–74PubMedCrossRefGoogle Scholar
  34. Moulaert VR, Wachelder EM, Verbunt JA, Wade DT, van Heugten CM (2010) Determinants of quality of life in survivors of cardiac arrest. J Rehabil Med 42(6):553–558PubMedCrossRefGoogle Scholar
  35. Neumann JT, Cohan CH, Dave KR, Wright CB, Perez-Pinzon MA (2013) Global cerebral ischemia: synaptic and cognitive dysfunction. Curr Drug Targets 14(1):20–35PubMedCrossRefGoogle Scholar
  36. Nikonenko AG, Radenovic L, Andjus PR, Skibo GG (2009) Structural features of ischemic damage in the hippocampus. Anat Rec (Hoboken) 292(12):1914–1921CrossRefGoogle Scholar
  37. Norenberg MD (1996) Astrocytic-ammonia interactions in hepatic encephalopathy. Semin Liver Dis 16(3):245–253PubMedCrossRefGoogle Scholar
  38. Pazos MR, Cinquina V, Gómez A, Layunta R, Santos M, Fernández-Ruiz J, Martínez-Orgado J (2012) Cannabidiol administration after hypoxia–ischemia to newborn rats reduces long-term brain injury and restores neurobehavioral function. Neuropharmacology 63(5):776–783PubMedCrossRefGoogle Scholar
  39. Pazos MR, Mohammed N, Lafuente H, Santos M, Martínez-Pinilla E, Moreno E, Valdizan E, Romero J, Pazos A, Franco R, Hillard CJ, Alvarez FJ, Martínez-Orgado J (2013) Mechanisms of cannabidiol neuroprotection in hypoxic newborn pigs: role of 5HT1A and CB2 receptors. Neuropharmacology 71:282–291PubMedCrossRefGoogle Scholar
  40. Pekny M, Pekna M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol. 204(4):428–437PubMedCrossRefGoogle Scholar
  41. Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50(4):427–434PubMedCrossRefGoogle Scholar
  42. Peskine A, Picq C, Pradat-diehl P (2010) Neurological sequelae after cerebral anoxia. Brain Inj 24(5):755–761PubMedCrossRefGoogle Scholar
  43. Petito CK, Halaby IA (1993) Relationship between ischemia and ischemic neuronal necrosis to astrocyte expression of glial fibrillary acidic protein. Int J Dev Neurosci 11(2):239–247PubMedCrossRefGoogle Scholar
  44. Prediger RD, Fernandes MS, Rial D, Wopereis S, Pereira VS, Bosse TS, Da Silva CB, Carradore RS, Machado MS, Cechinel-Filho V, Costa-Campos L (2008) Effects of acute administration of the hydroalcoholic extract of mate tea leaves (Ilex paraguariensis) in animal models of learning and memory. J Ethnopharmacol 120(3):465–473PubMedCrossRefGoogle Scholar
  45. Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20(12):570–577PubMedCrossRefGoogle Scholar
  46. Robel S, Berninger B, Götz M (2011) The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci 12(2):88–104PubMedCrossRefGoogle Scholar
  47. Sachdev PS, Chen X, Joscelyne A, Wen W, Brodaty H (2007) Amygdala in stroke/transient ischemic attack patients and its relationship to cognitive impairment and psychopathology: the Sydney stroke study. Am J Geriatr Psychiatry 15:487–496PubMedCrossRefGoogle Scholar
  48. Sagredo O, Pazos MR, Satta V, Ramos JA, Pertwee RG, Fernández-Ruiz J (2011) Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington’s disease. J Neurosci Res 89(9):1509–1518PubMedCrossRefGoogle Scholar
  49. Schmued LC, Stowers CC, Scallet AC, Xu L (2005) Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res 1035(1):24–31PubMedCrossRefGoogle Scholar
  50. Seif el Nasr M, Nuglisch J, Krieglstein J (1992) Prevention of ischemia-induced cerebral hypothermia by controlling the environmental temperature. J Pharmacol Toxicol Methods 27(1):23–26PubMedCrossRefGoogle Scholar
  51. Shinjyo N, Di Marzo V (2013) The effect cannabichromene on adult neural stem/progenitor cells. Neurochem 63(5):432–437CrossRefGoogle Scholar
  52. Soares LM, Schiavon AP, Milani H, de Oliveira RM (2013) Cognitive impairment and persistent anxiety-related responses following bilateral common carotid artery occlusion in mice. Behav Brain Res 249:28–37PubMedCrossRefGoogle Scholar
  53. Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56(2):149–171PubMedCrossRefGoogle Scholar
  54. Szydlowska K, Gozdz A, Dabrowski M, Zawadzka M, Kaminska B (2010) Prolonged activation of ERK triggers glutamate-induced apoptosis of astrocytes: neuroprotective effect of FK506. J Neurochem 113(4):904–918PubMedCrossRefGoogle Scholar
  55. Takuma K, Baba A, Matsuda T (2004) Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 72(2):111–127PubMedCrossRefGoogle Scholar
  56. Valdeolivas S, Satta V, Pertwee RG, Fernández-Ruiz J, Sagredo O (2012) Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington’s disease: role of CB1 and CB2 receptors. ACS Chem Neurosci 3(5):400–406PubMedCrossRefPubMedCentralGoogle Scholar
  57. Zhang L, Fu F, Zhang X, Zhu M, Wang T, Fan H (2010) Escin attenuates cognitive deficits and hippocampal injury after transient global cerebral ischemia in mice via regulating certain inflammatory genes. Neurochem Int 57(2):119–127PubMedCrossRefGoogle Scholar
  58. Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the Hippocampus. J Neurosci 6(10):2950–2967PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Angélica Pupin Schiavon
    • 1
  • Lígia Mendes Soares
    • 1
  • Jéssica Mendes Bonato
    • 1
  • Humberto Milani
    • 1
  • Francisco Silveira Guimarães
    • 2
  • Rúbia Maria Weffort de Oliveira
    • 1
    Email author
  1. 1.Department of Pharmacology and TherapeuticsState University of MaringáMaringaBrazil
  2. 2.Department of PharmacologySchool of MedicineRibeirão PrêtoBrazil

Personalised recommendations