Skip to main content
Log in

Response of Hippocampal Neurons and Glial Cells to Alternating Magnetic Field in Gerbils Submitted to Global Cerebral Ischemia

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine whether exposure to an extremely low-frequency magnetic field (ELF-MF, 50 Hz) affects the outcome of postischemic damage in the hippocampus of Mongolian gerbils. After 10-min bilateral carotid occlusion, the gerbils were continuously exposed to ELF-MF (average magnetic induction at the center of the cage was 0.5 mT) for 7 days. The impact of ELF-MF was estimated immediately (the 7th day after reperfusion) and 7 days after cessation of exposure (the 14th day after reperfusion) compared with ischemic gerbils without ELF-MF exposure. Applying stereological methods, histological evaluation of changes in the hippocampus was done for determining its volume, volume densities of degenerating neurons and astrocytes, as well as the number of microglial cells per unit area. ELF-MF per se did not induce any morphological changes, while 10-min global cerebral ischemia led to neuronal death, especially in CA1 region of the hippocampus, as expected. Ischemic gerbils exposed to ELF-MF had significantly a lower degree of cell loss in the examined structure and greater responses of astrocytes and microglial cells than postischemic gerbils without exposure on the seventh day after reperfusion (immediate effect of ELF-MF). Similar response was observed on the 14th day after reperfusion (delayed effect of ELF-MF); however, differences in measured parameters were low and insignificant. Applied ELF-MF has possible neuroprotective function in the hippocampus, as the most sensitive brain structure in the model of global cerebral ischemia, through reduction of neuronal death and activation of astrocytes and microglial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Block F (1999) Global ischemia and behavioural deficits. Prog Neurobiol 58:279–295. doi:10.1016/S0301-0082(98)00085-9

    Article  PubMed  CAS  Google Scholar 

  • Bodega G, Forcada I, Suárez I, Fernández B (2005) Acute and chronic effects of exposure to a 1-mT magnetic field on the cytoskeleton, stress proteins, and proliferation of astroglial cells in culture. Environ Res 98:355–362. doi:10.1016/j.envres.2004.12.010

    Article  PubMed  CAS  Google Scholar 

  • Bokura H, Robinson R (1997) Long-term cognitive impairment associated with caudate stroke. Stroke 28:970–975. doi:10.1161/01.STR.28.5.970

    Article  PubMed  CAS  Google Scholar 

  • Carlson N, Wieggel W, Chen J, Bacchi A, Rogers S, Gahring L (1999) Inflammatory cytokines IL-1a, IL-1ß, IL-6, and TNF- a impart neuroprotection to an excitotoxin through distinct pathways. J Immunol 163:3963–3968

    PubMed  CAS  Google Scholar 

  • Chen Y, Swanson R (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23:137–149

    Article  PubMed  Google Scholar 

  • Corbett D, Nurse S (1998) The problem of assessing effective neuroprotection in experimental cerebral ischemia. Prog Neurobiol 54:531–548. doi:10.1016/S0301-0082(97)00078-6

    Article  PubMed  CAS  Google Scholar 

  • Crack P, Taylor J (2005) Reactive oxygen species and the modulation of stroke. Free Radic Biol Med 38:1433–1444. doi:10.1016/j.freeradbiomed.2005.01.019

    Article  PubMed  CAS  Google Scholar 

  • Denes A, Thornton P, Rothwell N, Allan S (2010) Inflammation and brain injury: acute cerebral ischaemia, peripheral and central inflammation. Brain Behav Immun 24:708–723. doi:10.1016/j.bbi.2009.09.010

    Article  PubMed  CAS  Google Scholar 

  • Di Loreto S, Falone S, Caracciolo V, Sebastiani P, D’Alessandro A, Mirabilio A, Zimmitti V, Amicarelli F (2009) Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J Cell Physiol 219:334–343. doi:10.1002/jcp.21674

    Article  PubMed  Google Scholar 

  • Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190. doi:10.1002/glia.1107

    Article  PubMed  CAS  Google Scholar 

  • Dorph-Petersen K, Nyengaard J, Gundersen H (2001) Tissue shrinkage and unbiased stereological estimation of particle number and size. J Microsc 204(Pt 3):232–246

    Article  PubMed  CAS  Google Scholar 

  • Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55:310–318. doi:10.1016/j.neuropharm.2008.01.005

    Article  PubMed  CAS  Google Scholar 

  • Emsley H, Tyrrell P (2002) Inflammation and infection in clinical stroke. J Cereb Blood Flow Metab 22:1399–1419

    Article  PubMed  CAS  Google Scholar 

  • Feuerstein G, Wang X, Barone FC (1998) Cytokines in brain ischemia—the role of TNF alpha. Cell Mol Neurobiol 18:695–701

    Article  PubMed  CAS  Google Scholar 

  • Godefroy O, Rousseaux M, Pruvo J, Cabaret M, Leys D (1994) Neuropsychological changes related to unilateral lenticulostriate infarcts. J Neurol Neurosurg Psychiatry 57:480–485. doi:10.1136/jnnp.57.4.480

    Article  PubMed  CAS  Google Scholar 

  • Gölfert F, Hofer A, Thümmler M, Bauer H, Funk RH (2001) Extremely low frequency electromagnetic fields and heat shock can increase microvesicle motility in astrocytes. Bioelectromagnetics 22:71–78

    Article  PubMed  Google Scholar 

  • Gundersen H, Jensen E (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263. doi:10.1111/j.1365-2818.1987.tb02837.x

    Article  PubMed  CAS  Google Scholar 

  • Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M (2007) Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 27:488–500

    Article  PubMed  CAS  Google Scholar 

  • Jinno S, Fleischer F, Eckel S, Schmidt V, Kosaka T (2007) Spatial arrangement of microglia in the mouse hippocampus: a stereological study in comparison with astrocytes. Glia 55:1334–1347. doi:10.1002/glia.20552

    Article  PubMed  Google Scholar 

  • Kaszuba-Zwoińska J, Ciećko-Michalska I, Madroszkiewicz D, Mach T, Słodowska-Hajduk Z, Rokita E, Zaraska W, Thor P (2008) Magnetic field anti-inflammatory effects in Crohn’s disease depends upon viability and cytokine profile of the immune competent cells. J Physiol Pharmacol 59:177–187

    PubMed  Google Scholar 

  • Kato H, Takahashi A, Itoyama Y (2003) Cell cycle protein expression in proliferating microglia and astrocytes following transient global cerebral ischemia in the rat. Brain Res Bull 60:215–221. doi:10.1016/S0361-9230(03)00036-4

    Article  PubMed  CAS  Google Scholar 

  • Kim S, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81:302–313. doi:10.1002/jnr.20562

    Article  PubMed  CAS  Google Scholar 

  • Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69. doi:10.1016/0006-8993(82)90833-2

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318. doi:10.1016/0166-2236(96)10049-7

    Article  PubMed  CAS  Google Scholar 

  • Larsson E, Lindvall O, Kokaia Z (2001) Stereological assessment of vulnerability of immunocytochemically identified striatal and hippocampal neurons after global cerebral ischemia in rats. Brain Res 913:117–132. doi:10.1016/S0006-8993(01)02762-7

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Johng H, Lim J, Jeong J, Baik K, Nam T, Lee J, Kim J, Sohn U, Yoon G, Shin S, Soh K (2004) Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: a chemiluminescence study. J Photochem Photobiol B 73:43–48. doi:10.1016/j.jphotobiol.2003.10.003

    Article  PubMed  CAS  Google Scholar 

  • Levy D, Brierley J (1974) Communications between vertebro-basilar and carotid arterial circulations in the gerbil. Exp Neurol 45(3):503–508

    Article  PubMed  CAS  Google Scholar 

  • Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C, Ståhlberg A, Aprico K, Larsson K, Yabe T, Moons L, Fotheringham A, Davies I, Carmeliet P, Schwartz JP, Pekna M, Kubista M, Blomstrand F, Maragakis N, Nilsson M, Pekny M (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28:468–481. doi:10.1038/sj.jcbfm.9600546

    Article  PubMed  Google Scholar 

  • Manikonda P, Rajendra P, Devendranath D, Gunasekaran B, Channakeshava AradhyaR, Sashidhar R, Subramanyam C (2007) Influence of extremely low frequency magnetic fields on Ca2+ signaling and NMDA receptor functions in rat hippocampus. Neurosci Lett 413:145–149. doi:10.1016/j.neulet.2006.11.048

    Article  PubMed  CAS  Google Scholar 

  • Martin L, Al-Abdulla N, Brambrink A, Kirsch J, Sieber F, Portera-Cailliau C (1998) Neurodegeneration in excitotoxicity, global ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res Bull 46:281–309. doi:10.1016/S0361-9230(98)00024-0

    Article  PubMed  CAS  Google Scholar 

  • Murdoch J, Hall R (1990) Brain protection: physiological and pharmacological considerations. Part I: the physiology of brain injury. Can J Anaesth 37:663–671. doi:10.1007/BF03006487

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Kohsaka S (2001) Microglia: activation and their significance in the central nervous system. J Biochem 130:169–175

    Article  PubMed  CAS  Google Scholar 

  • Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K (2006) Microglia provide neuroprotection after ischemia. FASEB J 20:714–716

    PubMed  CAS  Google Scholar 

  • Nikolic L, Rokic M, Todorovic N, Kartelija G, Nedeljkovic M, Zakrzewska J (2010) Effect of alternating the magnetic field on phosphate metabolism in the nervous system of Helix pomatia. Biol Res 43:243–2500

    Article  PubMed  CAS  Google Scholar 

  • Oda T, Koike T (2004) Magnetic field exposure saves rat cerebellar granule neurons from apoptosis in vitro. Neurosci Lett 365:83–86. doi:10.1016/j.neulet.2004.04.068

    Google Scholar 

  • Panickar K, Norenberg M (2005) Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 50:287–298. doi:10.1002/glia.20181

    Article  PubMed  Google Scholar 

  • Paxinos G, Franklin K (2004) The mouse brain in stereotaxic coordinates. Elsevier Academic Press, Oxford

    Google Scholar 

  • Perry VH, Gordon S (1991) Macrophages and the nervous system. Int Rev Cytol 125:203–244. doi:10.1016/S0074-7696(08)61220-6

    Article  PubMed  CAS  Google Scholar 

  • Peskine A, Picq C, Pradat-Diehl P (2004) Cerebral anoxia and disability. Brain Inj 18:1243–1254. doi:10.1080/02699050410001719899

    Article  PubMed  Google Scholar 

  • Pirozzoli M, Marino C, Lovisolo G, Laconi C, Mosiello L, Negroni A (2003) Effects of 50 Hz electromagnetic field exposure on apoptosis and differentiation in a neuroblastoma cell line. Bioelectromagnetics 24:510–516. doi:10.1002/bem.10130

    Article  PubMed  CAS  Google Scholar 

  • Rauš S, Selaković V, Radenović L, Prolić Z, Janać B (2012) Extremely low frequency magnetic field induced changes in motor behaviour of gerbils submitted to global cerebral ischemia. Behav Brain Res 228:241–246. doi:10.1016/j.bbr.2011.10.046

    Article  PubMed  Google Scholar 

  • Redwine J, Kosofsky B, Jacobs R, Games D, Reilly J, Morrison J, Young W, Bloom F (2003) Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: a magnetic resonance microscopy and stereologic analysis. Proc Natl Acad Sci USA 100:1381–1386. doi:10.1073/pnas.242746599

    Article  PubMed  CAS  Google Scholar 

  • Ridet J, Malhotra S, Privat A, Gage F (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577. doi:10.1016/S0166-2236(97)01139-9

    Article  PubMed  CAS  Google Scholar 

  • Robertson J, Thomas A, Bureau Y, Prato F (2007) The influence of extremely low frequency magnetic fields on cytoprotection and repair. Bioelectromagnetics 28:16–30. doi:10.1002/bem.20258

    Article  PubMed  CAS  Google Scholar 

  • Selaković V, Janać B, Radenović L (2010) MK-801 effect on regional cerebral oxidative stress rate induced by different duration of global ischemia in gerbils. Mol Cell Biochem 342:35–50. doi:10.1007/s11010-010-0466-x

    Article  PubMed  Google Scholar 

  • Sherry D, Galef B Jr, Clark M (1996) Sex and intrauterine position influence the size of the gerbil hippocampus. Physiol Behav 60:1491–1494. doi:10.1016/S0031-9384(96)00311-3

    Article  PubMed  CAS  Google Scholar 

  • Sobel E, Davanipour Z, Sulkava R, Erkinjuntti T, Wikstrom J, Henderson VW, Buckwalter G, Bowman JD, Lee PJ (1995) Occupations with exposure to electromagnetic fields: a possible risk factor for Alzheimer’s disease. Am J Epidemiol 142:515–524

    PubMed  CAS  Google Scholar 

  • Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH (1999) Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19:RC39

    Google Scholar 

  • Swanson R, Choi D (1993) Glial glycogen stores affect neuronal survival during glucose deprivation in vitro. J Cereb Blood Flow Metab 13:162–169. doi:10.1038/jcbfm.1993.19

    Article  PubMed  CAS  Google Scholar 

  • Taoufik E, Petit E, Divoux D, Tseveleki V, Mengozzi M, Roberts M, Valable S, Ghezzi P, Quackenbush J, Brines M, Cerami A, Prober L (2008) TNF receptor I sensitizes neurons to erythropoietinand VEGF-mediated neuroprotection after ischemic and excitotoxic injury. Proc Natl Acad Sci USA 105(16):6185–6190

    Article  PubMed  CAS  Google Scholar 

  • von Bohlen und Halbach O, Unsicker K (2002) Morphological alterations in the amygdala and hippocampus of mice during ageing. Eur J Neurosci 16:2434–2440. doi:10.1046/j.1460-9568.2002.02405.x

    Article  Google Scholar 

  • Wender R, Brown A, Fern R, Swanson R, Farrell K, Ransom B (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20:6804–6810

    PubMed  CAS  Google Scholar 

  • Wieraszko A, Armani J, Maqsood N, Raja H, Philip S (2005) Modification of the synaptic glutamate turnover in the hippocampal tissue exposed to low-frequency, pulsed magnetic fields. Brain Res 1052:232–235. doi:10.1016/j.brainres.2005.06.034

    Article  PubMed  CAS  Google Scholar 

  • Wilson J (1997) Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 75:1149–1163. doi:10.1139/cjpp-75-10-11-1149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Ministry of Education and Science of the Republic of Serbia (Grant No. 173027) and MMA Grant (VMA/06-10/B.4). The authors are grateful to Dr. Spomenko Mihajlović (Department of Geomagnetism and Aeronomy, Sector for Geodetic Works, Republic Geodetic Authority, Republic of Serbia) for providing geomagnetic activity data. Also, we would like to thank Danijela Savić for generous help with Iba1-immunostaining method and image analysis.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snežana Rauš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauš, S., Selaković, V., Manojlović-Stojanoski, M. et al. Response of Hippocampal Neurons and Glial Cells to Alternating Magnetic Field in Gerbils Submitted to Global Cerebral Ischemia. Neurotox Res 23, 79–91 (2013). https://doi.org/10.1007/s12640-012-9333-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-012-9333-8

Keywords

Navigation