Comparative effects of artemether and in combination with diminazene aceturate in the treatment of experimental Trypanosoma brucei brucei infection in Wistar rats

Abstract

This study assessed the effects of artemether and in combination with diminazene aceturate on parasitaemia, weight, haematology and pathology induced by experimentally Trypanosoma brucei brucei infection in Wistar rats. Fifty adult rats comprising 25 each of males and females were assigned into 5 groups of ten rats (five males and five females). Rats in group I was uninfected while groups II-V were infected with T b brucei. Groups II were untreated; III administered diminazene aceturate once; IV and V administered artemether only and in combination with diminazene aceturate respectively for 5 days. Parasitaemia was determined daily, blood was collected for haematology and weight obtained every four days for a period of 32 days. At 24 days post-treatment, rats were humanely euthanized and organs harvested for pathological examination. Results revealed parasitaemia at day 4 post-infection, significant (p < 0.05) decrease in weight, erythrogram and leucogram in all infected rats. Following treatment, there was significant (p < 0.05) decrease in parasitaemia, increased weight gain and improved haematology. Pathological examination revealed significantly (p < 0.05) decreased gross and histopathological lesions in treated groups compared to group II. In conclusion, artemether and in combination with diminazene aceturate produced antitrypanosomal effects against experimental trypanosomosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Barghash SM (2016) Evaluation of in vitro and in vivo activities of some medicinal plants against trypanosomiasis. Int J Adv Res 4:1169–1178. https://doi.org/10.21474/IJAR01/1599

    CAS  Article  Google Scholar 

  2. Beverley SM (2016) African Trypanosomes Find a Fat Haven. Cell host Micro 19(6):748–749. https://doi.org/10.1016/j.chom.2016.05.022

    CAS  Article  Google Scholar 

  3. Eghianruwa KI, Oridupa OA (2018) Chemotherapeutic control of trypanosomosis-a review of past measures, current status and future trends. Vet arhiv 88(2):245–270. https://doi.org/10.24099/vet.arhiv.161115a

    CAS  Article  Google Scholar 

  4. Geiger A, Ponton F, Simo G (2015) Adult blood-feeding tsetse flies, trypanosomes, microbiota and the fluctuating environment in sub-Saharan Africa. ISME J 9(7):1496–1507. https://doi.org/10.1038/ismej.2014.236

    Article  PubMed  Google Scholar 

  5. Giordani F, Morrison LJ, Rowan TG, De Koning HP, Barrett MP (2016) The animal trypanosomiases and their chemotherapy: a review. Parasitol 143(14):1862–1889. https://doi.org/10.1017/S0031182016001268

    Article  Google Scholar 

  6. Guo Z (2016) Artemisinin anti-malarial drugs in China. Acta Pharm Sinica 6(2):115–124. https://doi.org/10.1016/j.apsb.2016.01.008

    Article  Google Scholar 

  7. Harvey AL (2008) Natural products in drug discovery. Drug Discovery Today 13(19–20):894–901. https://doi.org/10.1016/j.drudis.2008.07.004

    CAS  Article  PubMed  Google Scholar 

  8. Herbert WJ, Lumsden WHR (1976) Trypanosoma brucei: a rapid “matching” method for estimating the host’s parasitemia. Exp Parasitol 40(3):427–431. https://doi.org/10.1016/0014-4894(76)90110-7

    CAS  Article  PubMed  Google Scholar 

  9. Hien TT, Davis TM, Chuong LV, Ilett KF, Sinh DX, Phu NH (2004) Comparative pharmacokinetics of intramuscular artesunate and artemether in patients with severe falciparum malaria. Antimicrob Agents Chemother 48:4234–4239. https://doi.org/10.1128/AAC.48.11.4234-4239.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Ibrahim A, Mbaya AW, Anene BM, Luka J (2016) Comparative parasitaemia and haematology of mice, rats and rabbits experimentally infected with Trypanosoma brucei brucei and their responses to diminazene diaceturate (Veriben®) therapy. Asian Pacific J Trop Dis 6(7):527–532. https://doi.org/10.1016/S2222-1808(16)61082-4

    Article  Google Scholar 

  11. Jolayemi KO, Mohammed M, Sani D, Okoronkwo MO, Amaje J (2020) In vitro and in vivo changes observed in Trypanosoma brucei brucei-infected rats treated with artesunate and/or diminazene aceturate. Sokoto J Vet Sci 18(4):211–220. https://doi.org/10.4314/sokjvs.v18i4.5

    Article  Google Scholar 

  12. Kagira JM, Thuita JK, Ngotho M, Mdachi R, Mwangangi DM, Ndung’u JM (2006) Haematology of experimental Trypanosoma brucei rhodesiense infection in vervet monkeys. Afr J Health Sci 13(3):59–65. https://doi.org/10.4314/ajhs.v13i3.30837

    Article  Google Scholar 

  13. Kennedy PG (2013) Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol 12(2):186–194. https://doi.org/10.1016/S1474-4422(12)70296-X

    Article  PubMed  Google Scholar 

  14. Luna LG (1968) Manual of histologic staining methods of the Armed Forces Institute of Pathology. Third edition McGraw-Hill New York:174.

  15. Mergia E, Shibeshi W, Terefe G, Teklehaymanot T (2016) Antitrypanosomal activity of Verbascum sinaiticum Benth (Scrophulariaceae) against Trypanosoma congolense isolates. BMC Complement Alter Med 16:362. https://doi.org/10.1186/s12906-016-1346-z

    CAS  Article  Google Scholar 

  16. Muhanguzi D, Mugenyi A, Bigirwa G, Kamusiime M, Kitibwa A, Akurut GG, Ochwo S, Amanyire W, Okech SG, Hattendorf J, Tweyongyere R (2017) African animal trypanosomiasis as a constraint to livestock health and production in Karamoja region: a detailed qualitative and quantitative assessment. BMC Vet Res 13(1):355. https://doi.org/10.1186/s12917-017-1285-z

    Article  PubMed  PubMed Central  Google Scholar 

  17. Naß J, Efferth T (2018) The activity of Artemisia spp. and their constituents against Trypanosomiasis. Phytomedicine 47:184–191. https://doi.org/10.1016/j.phymed.2018.06.002

    CAS  Article  PubMed  Google Scholar 

  18. Okwor OH, Ogugua VN, Okagu IU (2020) Therapeutic evaluation of anti-trypanosoma activity of ethanol extracts of Jatropha curcas roots in comparison with diminazene aceturate in Trypanosoma brucei brucei–parasitized rats. Comp Clin Pathol 29(6):1189–1198. https://doi.org/10.1007/s00580-020-03171-3

    CAS  Article  Google Scholar 

  19. Rosenthal PJ (2004) Antiprotozoal drugs. In: Katzung, BG Basic and Clinical Pharmacology. The McGraw-Hill Companies Incorporation. Singapore:864–885.

  20. Schalm OW, Jain NC, Carroll EJ (1975) Veterinary hematology. Lea and Febiger, Philadelphia, P. 422

    Google Scholar 

  21. Stijlemans B, De Baetseller P, Magez S, Van Ginderachter JA, Trez CD (2018) African Trypanosomiasis-associated anemia: The contribution of the interplay between parasites and the mononuclear phagocyte System. Front Immunol 9:218. https://doi.org/10.3389/fimmu.2018.00218

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Szempruch AJ, Sykes SE, Kieft R, Dennison L, Becker AC, Gartrell A, Martin WJ, Nakavasu ES, Almeida IC, Hajduk SL, Harrington JM (2016) Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell 164(1–2):246–257. https://doi.org/10.1016/j.cell.2015.11.051

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Tauheed AM, Mamman M, Ahmed A, Suleiman MM, Balogun EO (2020) In vitro and in vivo antitrypanosomal efficacy of combination therapy of Anogeissus leiocarpus. Khaya senegalensis and potash J Ethnopharmacol 258:112805. https://doi.org/10.1016/j.jep.2020.112805

    CAS  Article  PubMed  Google Scholar 

  24. Tesfalem NE (2017) Immune response of hosts and prospects of vaccine development against African Trypanosomes: the review. J Nat Sci Res 7(5):1–9

    Google Scholar 

  25. Waller DG, Sampson AP (2017) Chemotherapy of infections. In: Medical Pharmacology and Therapeutics Fifth Edition. Elsevier:581–629

  26. Weber JS, Ngomtcho SCH, Shaida SS, Chechet GD, Gbem TT, Nok JA, Kelm S (2019) Genetic diversity of trypanosome species in tsetse flies (Glossina spp.) in Nigeria. Parasites Vectors 12(1):481. https://doi.org/https://doi.org/10.1186/s13071-019-3718-y

  27. White NJ (2008) Qinghaosu (artemisinin): the price of success. Science 320(5874):330–334. https://doi.org/10.1126/science.1155165

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Mr. Dennis Otie of Department of Veterinary Pharmacology and Toxicology A.B.U. Zaria, for his technical expertise and assistance in conducting this research.

Funding

None to be disclosed.

Author information

Affiliations

Authors

Contributions

KOJ, MM and DS conceived and designed the research. KOJ, MOO and CCU carried out the experiment. KOJ and OO analyzed the data. KOJ wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kelvin Olutimilehin Jolayemi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Ethical approval was obtained from Ahmadu Bello University Committee on Animal Use and Care (ABUCAUC).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jolayemi, K.O., Mamman, M., Sani, D. et al. Comparative effects of artemether and in combination with diminazene aceturate in the treatment of experimental Trypanosoma brucei brucei infection in Wistar rats. J Parasit Dis (2021). https://doi.org/10.1007/s12639-021-01350-9

Download citation

Keywords

  • Artemether
  • Haematology
  • Parasitaemia
  • Pathology
  • Trypanosoma brucei brucei