Substituent Effect On Structure, Stability, and Electronic Properties of the Novel Bicyclic Silylenes at DFT

Abstract

The density functional theory (DFT) calculations are carried out to assay the effects of nitrogen atoms on the stability and reactivity of singlet (s) and triplet (t) forms of novel silylenes with one, two, and three silylene centers (1s-18s and 1t-18t, receptively) at B3LYP/6-311 + + G** level of theory. Every one of the 36 silylenes scrutinized appears as minimum on its energy surface, for showing no negative force constant. All of our silylenes have singlets ground state and the highest stability belongs to silylene 2 (ΔEs−t = 44.71.95 kcal/mol). This clearly demonstrates the effect of intermolecular interactions (\(\sigma\)(C(E and G)−H(exo))→LP*S̈i). The aim of the present work was to consider the influence of nitrogen substituents on the stability (ΔEs−t), band gap (ΔΕHOMO−LUMO), nucleophilicity (N), electrophilicity (ω), and isodesmic reactions. Finally, our investigation offers new insights into the chemistry of novel bicyclic silylenes that can be applied as cumulated multi-dentate ligands.

Graphical Abstract

We have compared and contrasted the substituent effects on the stability and reactivity of singlet (s) and triplet (t) forms of novel silylenes with one, two, and three silylene centers (1s-18s and 1t-18t, receptively) at B3LYP/6-311 + + G** level of theory. All novel silylenes show singlet ground state and the highest stability belongs to silylene 2 (ΔEs−t = 44.71.95 kcal/mol). This stability can be related to its intermolecular interactions. The nonbonding electrons at the nitrogens (E or G) of silylenes 3s, 5s, 6s, 7s, 8s, 9s, 11s, 14s and 15s appear to have a tendency to interact with the empty p orbital of the silylene center and form a σ-bond.

This is a preview of subscription content, access via your institution.

Data Availability

Not applicable

References

  1. 1

    Kassaee MZ, Zandi H, Haerizade BN, Ghambarian M (2012) Comput Theor Chem 1001:39–43

    CAS  Article  Google Scholar 

  2. 2

    Momeni MR, Shakib FA (2011) Organometallics 30(18):5027–5032

    CAS  Article  Google Scholar 

  3. 3

    Koohi M, Bastami H (2020) Monatsh Chem-Chem Mon 151(1):11–23

    CAS  Article  Google Scholar 

  4. 4

    Abedini N, Kassaee MZ, Cummings PT (2020) Silicon :1–7. https://doi.org/10.1007/s12633-020-00745-2

  5. 5

    Mizuhata Y, Sasamori T, Tokitoh N (2009) Chem Rev 109:3479–3511

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Bourissou D, Guerret O, Gabbai FP, Bertrand G (2000) Chem Rev 100:39–92

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Barden CJ, Schaefer HF (2000) J Chem Phys 112:6515–6516

    CAS  Article  Google Scholar 

  8. 8

    Lee EPF, Dyke JM, Wright TG (2000) Chem Phys Lett 326:143–150

    CAS  Article  Google Scholar 

  9. 9

    Bruce M (1991) Chem Rev 91:197–257

    CAS  Article  Google Scholar 

  10. 10

    Nefedov OM, Egorov MP, Ioffe AI, Menchikov LG, Zuev PS, Minkin VI, Simkin BY, Glukhovstev MN (1992) Pure Appl Chem 64:265–314

    CAS  Article  Google Scholar 

  11. 11

    Schwartz RL, Davico GE, Ramond TM, Lineberger WC (1999) J Phys Chem A 103:8213–8221

    CAS  Article  Google Scholar 

  12. 12

    Heaven MW, Metha GF, Buntine MA (2001) J Phys Chem A 105:1185–1196

    CAS  Article  Google Scholar 

  13. 13

    Zachariah MR, Tsang W (1995) J Phys Chem 99:5308–5318

    CAS  Article  Google Scholar 

  14. 14

    Boudjouk P, Black E, Kumarathasan R (1991) Organometal 10:2095–2096

    CAS  Article  Google Scholar 

  15. 15

    Lucas DJ, Curtiss LA, Pople JA (1993) J Chem Phys 99:6697–6703

    CAS  Article  Google Scholar 

  16. 16

    Cote DR, Van Nguyen S, Stamper AK, Armbrust DS, Tobben D, Conti RA, Lee GY (1999) IBM J Res Dev 43:5–38

    CAS  Article  Google Scholar 

  17. 17

    Kassaee MZ, Buazar F, Soleimani-Amiri S (2008) J Mol Struct THEOCHEM 866:52–57

    CAS  Article  Google Scholar 

  18. 18

    Kassaee MZ, Najafi Z, Shakib FA, Momeni MR (2011) J Organometal Chem 696:2059–2064

    CAS  Article  Google Scholar 

  19. 19

    Schoeller WW, Eisner D (2004) Inorg Chem 43:2585–2589

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Kirilchuk AA, Rozhenko AB, Leszczynski J (2017) Comp Theor Chem 1103:83–91

    CAS  Article  Google Scholar 

  21. 21

    Nyulaszi L, Belghazi A, Kis-Szetsi S, Veszpremi T, Heinicke J (1994) Theochem 313:73–81

    Article  Google Scholar 

  22. 22

    Zhou YP, Zh. Mo MPh, Luecke M, Driess (2018) Chem Eur J 24:4780–4784

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Brück A, Gallego D, Wang W, Irran E, Driess M, Hartwig JF (2012) Angew Chem Int Ed 51:11478–11482

    Article  CAS  Google Scholar 

  24. 24

    Ren H, Zhou YP, Bai Y, Cui C, Driess M (2017) Chem Eur J 23:5663–5667

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25

    Zhou YP, Wang Y, Driess M (2017) J Organometal Chem 829:2–10

    Article  CAS  Google Scholar 

  26. 26

    Schmidt M, Blom B, Szilvasi T, Schomacker R, Driess M (2017) Eur J Inorg Chem 9:1284–1291

    Article  CAS  Google Scholar 

  27. 27

    Mark JE, Allcock HR, West R (1992) Inorganic Polymers. Prentice Hall, New Jersey

    Google Scholar 

  28. 28

    Wisian-Neilson P, Allcock HR, Wynne KJ (1994) Inorganic and Organometallic Polymers II. ACS, Washington DC

    Google Scholar 

  29. 29

    Manners I (1996) Angew Chem Int Ed Eng 35:1602

    Article  Google Scholar 

  30. 30

    Silaghi-Dumitrescu I, Haiduc I, Sowerby DB (1993) Inorg Chem 32(17):3755–3758

    CAS  Article  Google Scholar 

  31. 31

    Strout DL (2001) J Phys Chem A 105(1):261–263

    CAS  Article  Google Scholar 

  32. 32

    Strout DL (2000) J Phys Chem A 104(15):3364–3366

    CAS  Article  Google Scholar 

  33. 33

    Silaghi-Dumitrescu I, Lara-Ochoa F, Bishof P, Haiduc I (1996) J Mol Struct Theochem 367:47–54

    CAS  Article  Google Scholar 

  34. 34

    Camp D, Campitelli M, Hanson GR, Jenkins ID (2012) J Am Chem Soc 134:16188–16196

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Nagase S (1995) Acc Chem Res 28(11):469–476

    CAS  Article  Google Scholar 

  36. 36

    Soleimani Purlak N, Kassaee MZ (2020) J Phys Org Chem 33(6):e4053

    CAS  Article  Google Scholar 

  37. 37

    Becke AD (1993) J Chem Phys 98:5648–5652

    CAS  Article  Google Scholar 

  38. 38

    Yan Z, Truhlar DG (2008) Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  39. 39

    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    CAS  Article  Google Scholar 

  40. 40

    Adamo C, di Matteo A (1999) Adv Quantum Chem 36:45–75

    CAS  Article  Google Scholar 

  41. 41

    Zhao Y, Truhlar DG (2008) Acc Chem Res 41(2):157–167

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Abedini N, Kassaee MZ. Struct Chem :1–8. https://doi.org/10.1007/s11224-020-01715-5

  43. 43

    Becke AD (1996) J Chem Phys 104:1040–1046

    CAS  Article  Google Scholar 

  44. 44

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    CAS  Article  Google Scholar 

  45. 45

    Kassaee MZ, Ashenagar S (2018) J Mol Model 24:1–11

    CAS  Article  Google Scholar 

  46. 46

    Domingo LR, Chamorro E, Perez P (2008) J Org Chem 73:4615–4624

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Parr RG, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922–1924

    CAS  Article  Google Scholar 

  48. 48

    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The support from Tarbiat Modares University (TMU) is gratefully acknowledged.

Funding

Tarbiat Modares University

Author information

Affiliations

Authors

Contributions

Nastaran Abedini and Mohamad Z. Kassaee

Corresponding author

Correspondence to Mohamad Zaman Kassaee.

Ethics declarations

Not applicable

Conflicts of Interest

There are no conflicts to declare. 

Consent to Participate

We have consent to participate.

Consent for Publication

We consent for publication

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 216 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abedini, N., Kassaee, M.Z. Substituent Effect On Structure, Stability, and Electronic Properties of the Novel Bicyclic Silylenes at DFT. Silicon (2021). https://doi.org/10.1007/s12633-021-00998-5

Download citation

Keywords

  • Silylene
  • Stability
  • DFT
  • Coordinate covalent bond