Abstract
Tri-Gate (TG) FinFETs are the most reliable option to get into deeply scaled gate lengths. This paper analyses an optimized 5 nm gate length (LG) n-channel TG Junctionless SOI FinFET by different spacer engineering techniques with hafnium based (HfxTi1-xO2) high-k dielectric in the gate stack. The device process parameters like dielectric spacer impact, nano-fin geometry variation, and power analysis along with DC, Analog/RF, and linearity metrics at the nanoscale are investigated. To increase the accuracy of results at lower gate lengths, quantum models are involved by using TCAD simulator. The proposed device shows excellent electrical characteristics with DIBL = 10.6 mV/V, SS = 63.6 mV/dec, switching ratio (ION/IOFF) = ~107 and good ON-OFF performance metric Q = gm/SS = 2.06 × 10−5 S-dec/μm-mV even at 5 nm LG. The performance impact of outer low-k spacer dielectric variation in dual-k spacer reveals that performance enhancement of ~77% in terms of switching ratio, reduction of leakage current by ~73%, and improvement of gm by ~10% have been noticed from SiO2 + HfO2 to Si3N4 + HfO2. However, due to high-k dielectric in dual-k spacer gate capacitances increases, which leads to deterioration of RF parameters like ft, τ, and GBW. The Air single-k spacer shows good performance for RF applications with ft = 600 GHz, τ = 1 ps, GBW = 1.23 THz and dynamic power = 0.095 fJ/μm at LG = 5 nm. However, the linearity characteristics deteriorates for dual-k spacers and higher dielectric single-k spacers (SiO2, Si3N4) has been noticed. This investigation reveals that at nanoscale Air spacer outperforms all other spacer combinations for low power applications and better linearity (low distortion), and assures further scaling for RF applications.
This is a preview of subscription content, access via your institution.
Data Availability
Not applicable.
References
- 1.
Sahay S, Kumar MJ (2019) Junctionless field-effect transistors: design, modeling, and simulation. Wiley, Hoboken
- 2.
Moore GE (2006) Lithography and the future of Moore's law. IEEE Solid-State Circuits Society Newsletter 11(3):37–42
- 3.
Narendar V, Tripathi S, Naik RBS (2018) A two-dimensional (2D) analytical modeling and improved Short Channel performance of Graded-Channel gate-stack (GCGS) dual-material double-gate (DMDG) MOSFET. Silicon 10(6):2399–2407
- 4.
Nowak EJ, Aller I, Ludwig T, Keunwoo Kim, Joshi RV, Ching-te Chuang, Bernstein K, Puri R (2004) Turning silicon on its edge double gate CMOS/FinFET technology. IEEE Circ Devices Mag 20(1):20–31
- 5.
Sachid AB, Chen M, Hu C (2017) Bulk FinFET with low-k spacers for continued scaling. IEEE Trans Electron Devices 64(4):1861–1864
- 6.
Colinge JP, Lee CW, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher AM, McCarthy B, Murphy R (2010) Nanowire transistors without junctions. Nat Nanotechnol 5(3):225–229
- 7.
Colinge JP et al (2011) Junctionless transistors: physics and properties, semiconductor-on-insulator materials for Nanoelectronics applications, engineering materials. Springer-Verlag, New York, pp 187–200
- 8.
Singh N, Agarwal A, Bera LK, Liow TY, Yang R, Rustagi SC, Tung CH, Kumar R, Lo GQ, Balasubramanian N, Kwong DL (2006) High-performance fully depleted silicon nanowire (diameter /spl les/ 5 nm) gate-all-around CMOS devices. IEEE Electron Device Lett 27(5):383–386
- 9.
Biswas K, Sarkar A, Sarkar CK (2017) Spacer engineering for performance enhancement of junctionless accumulation-mode bulk FinFETs. IET Circ Devices Syst 11(1):80–88
- 10.
Lee C et al (2010) High-temperature performance of silicon junctionless MOSFETs. IEEE Trans Electron Devices 57(3):620–625
- 11.
Veeraraghavan S, Fossum JG (1989) Short-channel effects in SOI MOSFETs. IEEE Trans Electron Devices 36(3):522–528
- 12.
Narendar V et al (2019) Investigation of short channel effects (SCEs) and analog/RF figure of merits (FOMs) of dual-material bottom-spacer ground-plane (DMBSGP) FinFET. Silicon 12:2283–2291
- 13.
Subramanian V, Parvais B, Borremans J, Mercha A, Linten D, Wambacq P, Loo J, Dehan M, Gustin C, Collaert N, Kubicek S, Lander R, Hooker J, Cubaynes F, Donnay S, Jurczak M, Groeseneken G, Sansen W, Decoutere S (2006) Planar bulk MOSFETs versus FinFETs: an analog/RF perspective. IEEE Trans Electron Devices 53(12):3071–3079
- 14.
Pal PK, Kaushik BK, Dasgupta S (2014) Investigation of symmetric dual-k spacer trigate FinFETs from delay perspective. IEEE Trans Electron Devices 61(11):3579–3585
- 15.
Colinge J-P (2008) FinFETs and other multi-gate transistors. Springer-Verlag, New York
- 16.
Narendar et al (2020) A novel bottom-spacer ground-plane (BSGP) FinFET for improved logic and analog/RF performance. AEU Int J Electron Commun 127:153459
- 17.
Ko H, Kim J, Kang M, Shin H (2017) Investigation and analysis of dual-K spacer with different materials and spacer lengths for nanowire FET performance. Solid State Electron 136:68–74
- 18.
Srivastava, N. A and Mishra, R. A. (2019) Linearity distortion assessment and small-signal behavior of Nano-scaled SOI MOSFET for terahertz application. ECS J Solid State Sci Technol 8: N234
- 19.
Baidya, A., Lenka, T.R and Baishya, S (2020) Linear distortion analysis of 3D double gate Junctionless transistor with high-K dielectrics and gate metals. Silicon
- 20.
Barraud S, Berthome M, Coquand R, Casse M, Ernst T, Samson MP, Perreau P, Bourdelle KK, Faynot O, Poiroux T (2012) Scaling of trigate junctionless nanowire MOSFET with gate length down to 13 nm. IEEE Electron Device Lett 33(9):1225–1227
- 21.
Kumar R, Kumar A (2020) Hetro-dielectric (HD) oxide-engineered Junctionless double gate all around (DGAA) nanotube field effect transistor (FET). Silicon
- 22.
Yu E, Heo K, Cho S (2018) Characterization and optimization of inverted-T FinFET under nanoscale dimensions. IEEE Trans Electron Devices 65(8):3521–3527
- 23.
(2013). International Technology Roadmap for Semiconductors (ITRS). [Online]. Available: http://www.itrs2.net
- 24.
(2008) Genius, 3-D Device Simulator, Version1.9.0, Reference Manual, Cogenda, Singapore
- 25.
Lin J (1997) Fet device with double spacer. U.S. Patent 5 663 586, Sep. 2
- 26.
Chen S et al (2015) ESD characterization of gate-all-around (GAA) Si nanowire devices, 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC 14.4.1–14.4.4, https://doi.org/10.1109/IEDM.2015.7409696
- 27.
Pal PK, Kaushik BK, Dasgupta S (2015) Asymmetric dual-spacer Trigate FinFET device-circuit Codesign and its variability analysis. IEEE Trans Electron Devices 62(4):1105–1112
- 28.
Thirunavukkarasu V, Jhan Y, Liu Y, Wu Y (2015) Performance of inversion, accumulation, and junctionless mode n-type and p-type bulk silicon FinFETs with 3-nm gate length. IEEE Electron Device Lett 36(7):645–647
- 29.
Narendar V (2018) Performance enhancement of FinFET devices with gate-stack (GS) high-K dielectrics for Nanoscale applications. Silicon 10:2419–2429
- 30.
Bousari NB, Anvarifard MK, Haji-Nasiri S (2019) Benefitting from high-κ spacer engineering in balistic triple-gate junctionless FinFET- a full quantum study. Silicon 12:2221–2228
- 31.
Vadhitya N, Mishra RA (2015) Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs). Superlattice Microst 85:357–369
- 32.
Gupta S, Nandi A (2017) Effect of air spacer on analog performance of underlap trigate FinFET. Superlattice Microst 109:693–701
- 33.
Manikandan S, Balamurugan NB (2020) The improved RF/stability and linearity performance of the ultrathin-body Gaussian-doped junctionless FinFET. J Comput Electron 19:613–621
- 34.
Sachid AB, Huang YM, Chen YJ, Chen CC, Lu DD, Chen MC, Hu C (2017) FinFET with encased air-gap spacers for high-performance and low-energy circuits. IEEE Electron Device Lett 38(1):16–19
- 35.
Nandi A, Saxena AK, Dasgupta S (2013) Design and analysis of analog performance of dual-k spacer Underlap N/P-FinFET at 12 nm gate length. IEEE Trans Electron Devices 60(5):1529–1535
- 36.
Narasimhulu T, Lakshmi B (2017) RF performance enhancement in multi-fin TFETs by scaling inter fin separation. Mater Sci Semicond Process 71:304–309
- 37.
Chowdhury N, Iannaccone G, Fiori G, Antoniadis DA, Palacios T (2017) GaN nanowire n-MOSFET with 5 nm channel length for applications in digital electronics. Electron Dev Lett 38(7):859–862
- 38.
Ryu D et al (2020) Design and optimization of triple-k spacer structure in two-stack Nanosheet FET from OFF-state leakage perspective. IEEE Trans Electron Devices 3(67):1317–1322
- 39.
Saha R, Goswami R, Bhowmick B, Baishya S (2020) Dependence of RF/Analog and linearity figure of merits on temperature in ferroelectric FinFET: a simulation study. IEEE Trans Ultrason Ferroelectr Freq Control 11(67):2433–2439
- 40.
Kumar A, Gupta N, Tripathi SK, Tripathi MM, Chaujar R (2020) Performance evaluation of linearity and intermodulation distortion of nanoscale GaN-SOI FinFET for RFIC design. AEU Int J Electron Commun 115:153052
- 41.
Saha R, Bhowmick B, Baishya S (2020) Impact of lateral straggle on linearity performance in gate-modulated (GM) TFET. Appl Phys A Mater Sci Process 126:201
Acknowledgements
The authors thank to the department of Electronics and Communications Engineering, NIT Warangal for providing the TCAD Tools.
Funding
No funding received
Author information
Affiliations
Contributions
V. Bharath Sreenivasulu: Writing- Original draft preparation, Formal Analysis, Investigation, Simulation, Data Curation.
V. Narendar: Conceptualization, Methodology, Supervision.
Corresponding author
Ethics declarations
The authors declare that they have no known competing interest or personal relationship that could have appeared to influence the work reported in this paper.
Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Financial Interests
The authors declare they have no Financial interests.
Conflict of Interest
The author has no conflicts of interest to declare that are relevant to the content of this article.
-
The contents of this manuscript are not now under consideration for publication elsewhere;
-
The contents of this manuscript have not been copyrighted or published previously.
-
The contents of this manuscript will not be copyrighted, submitted, or published elsewhere, while acceptance by the Journal is under consideration.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sreenivasulu, V.B., Narendar, V. A Comprehensive Analysis of Junctionless Tri-Gate (TG) FinFET Towards Low-Power and High-Frequency Applications at 5-nm Gate Length. Silicon (2021). https://doi.org/10.1007/s12633-021-00987-8
Received:
Accepted:
Published:
Keywords
- Tri-gate (TG) JL SOI FinFET
- High-k metal gate
- Single-k/dual-k spacer
- Analog/RF and linearity parameters
- Dynamic power
- Power consumption