Preparation and Characterization of Transparent Semiconducting Silica Nanocomposites Doped with P2O5 and Al2O3

Abstract

A silicate (SiO2) doped with two different dopants P2O5 and Al2O3 were prepared using a direct sol-gel method and calcined at 400 °C. XRD and FTIR spectra of films were measured. The addition of dopant and their ability to eliminate (OH−) groups affected the examined features of doped silica films. The optical results for SiO2, 4Al2O3:6SiO2, and 4P2O5:6SiO2 reveal that the dopant type has explicit influences on the high transparency silica film and their optical properties. The index of refraction (n), absorption coefficient (α), and the relative permittivity (dielectric constant (ε)) were concluded using evaluations of the reflectance and transmittance spectra.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Banerjee JP, Banerjee S (2019) Physics of semiconductors and nanostructures. CRC Press, New York

    Google Scholar 

  2. 2.

    Higazy AA, Afifi H, Khafagy AH, el-Shahawy MA, Mansour AM (2006) Ultrasonic studies on polystyrene/styrene butadiene rubber polymer blends filled with glass fiber and talc. Ultrasonics 44:e1439–e1445. https://doi.org/10.1016/j.ultras.2006.05.142

    Article  PubMed  Google Scholar 

  3. 3.

    Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12:1–39. https://doi.org/10.1590/S1516-14392009000100002

    CAS  Article  Google Scholar 

  4. 4.

    Gao E, Xie B, Xu Z (2016) Two-dimensional silica: structural, mechanical properties, and strain-induced band gap tuning. J Appl Phys 119:014301. https://doi.org/10.1063/1.4939279

    CAS  Article  Google Scholar 

  5. 5.

    Dineen JK (1963) Immunological aspects of parasitism. Nature 197:268–269. https://doi.org/10.1038/197268a0

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72. https://doi.org/10.1021/cr00099a003

    CAS  Article  Google Scholar 

  7. 7.

    Asmatulu R, Khan WS, Reddy RJ, Ceylan M (2015) Synthesis and analysis of injection-molded nanocomposites of recycled high-density polyethylene incorporated with graphene nanoflakes. Polym Compos 36:1565–1573. https://doi.org/10.1002/pc.23063

    CAS  Article  Google Scholar 

  8. 8.

    Amini MM, Mehraban Z, Sabounchei SJ (2003) Sol–gel processing of β-eucryptite: an nuclear magnetic resonance investigation in sol stage. Mater Chem Phys 78:81–87. https://doi.org/10.1016/S0254-0584(02)00315-2

    Article  Google Scholar 

  9. 9.

    Xu W, Ren J, Shao C, Wang X, Wang M, Zhang L, Chen D, Wang S, Yu C, Hu L (2015) Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ co-doped silica glass. J Lumin 167:8–15. https://doi.org/10.1016/j.jlumin.2015.05.061

    CAS  Article  Google Scholar 

  10. 10.

    DiGiovanni DJ, MacChesney JB, Kometani TY (1989) Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join. J Non-Cryst Solids 113:58–64. https://doi.org/10.1016/0022-3093(89)90318-9

    CAS  Article  Google Scholar 

  11. 11.

    Likhachev ME, Bubnov MM, Zotov KV, Medvedkov OI, Lipatov DS, Yashkov MV, Gur'yanov AN (2010) Erbium-doped aluminophosphosilicate optical fibres. Quantum Electronics 40:633–638. https://doi.org/10.1070/qe2010v040n07abeh014326

    CAS  Article  Google Scholar 

  12. 12.

    Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer Nanocomposites—a review. J Nanomater 2012:1–15. https://doi.org/10.1155/2012/132424

    CAS  Article  Google Scholar 

  13. 13.

    El Nahrawy AM, Mansour AM, Abou Hammad AB, Wassel AR (2019) Effect of cu incorporation on morphology and optical band gap properties of nano-porous lithium magneso-silicate (LMS) thin films. Materials Research Express 6:016404. https://doi.org/10.1088/2053-1591/aae343

    CAS  Article  Google Scholar 

  14. 14.

    ElNahrawy AM, AbouHammad AB (2016) A facile co-gelation sol gel route to synthesize cao: P2o5: Sio2 xerogel embedded in chitosan nanocomposite for bioapplications. International Journal of PharmTech Research 9:16–21

    CAS  Google Scholar 

  15. 15.

    Mozafari M, Moztarzadeh F, Tahriri M (2010) Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid. J Non-Cryst Solids 356:1470–1478. https://doi.org/10.1016/j.jnoncrysol.2010.04.040

    CAS  Article  Google Scholar 

  16. 16.

    Hemdan BA, El Nahrawy AM, Mansour A-FM, Hammad ABA (2019) Green sol–gel synthesis of novel nanoporous copper aluminosilicate for the eradication of pathogenic microbes in drinking water and wastewater treatment. Environ Sci Pollut Res 26:9508–9523. https://doi.org/10.1007/s11356-019-04431-8

    CAS  Article  Google Scholar 

  17. 17.

    Wang S-L, Johnston CT, Bish DL, White JL, Hem SL (2003) Water-vapor adsorption and surface area measurement of poorly crystalline boehmite. J Colloid Interface Sci 260:26–35. https://doi.org/10.1016/S0021-9797(02)00150-9

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Abou Hammad AB, Elnahrawy AM, Youssef AM, Youssef AM (2019) Sol gel synthesis of hybrid chitosan/calcium aluminosilicate nanocomposite membranes and its application as support for CO2 sensor. Int J Biol Macromol 125:503–509. https://doi.org/10.1016/j.ijbiomac.2018.12.077

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wu X, Meng G, Wang S, Wu F, Huang W, Gu Z (2015) Zn and Sr incorporated 64S bioglasses: material characterization, in-vitro bioactivity and mesenchymal stem cell responses. Mater Sci Eng C 52:242–250. https://doi.org/10.1016/j.msec.2015.03.057

    CAS  Article  Google Scholar 

  20. 20.

    Glorieux B, Salminen T, Massera J, Lastusaari M, Petit L (2018) Better understanding of the role of SiO2, P2O5 and Al2O3 on the spectroscopic properties of Yb3+ doped silica sol-gel glasses. J Non-Cryst Solids 482:46–51. https://doi.org/10.1016/j.jnoncrysol.2017.12.021

    CAS  Article  Google Scholar 

  21. 21.

    El Nahrawy AM, Abou Hammad AB, Abdel-Aziz MS, Wassel AR (2019) Spectroscopic and antimicrobial activity of hybrid chitosan/silica membranes doped with Al2O3 nanoparticles. Silicon 11:1677–1685. https://doi.org/10.1007/s12633-018-9986-x

    CAS  Article  Google Scholar 

  22. 22.

    Hassan N, Mansour AM, Roushdy N, Farag AAM, Osiris WG (2018) Optical sensing performance characteristics of Schottky devices diodes based nano-particle disodium 6-hydroxy-5-[(2-methoxy-5-methyl-4-sulfophenyl)azo]-2-naphthalenesulfonate thin films: a comparison study. Optik 158:1255–1265. https://doi.org/10.1016/j.ijleo.2017.12.203

    CAS  Article  Google Scholar 

  23. 23.

    Mansour AM, El Radaf IM (2019) Structural, optical and electrical properties of CuBiS<SUB align="right">2 thin films deposited by spray pyrolysis at different deposition times. Int J Microstruct Mater Prop 14:419. https://doi.org/10.1504/IJMMP.2019.102219

    Article  Google Scholar 

  24. 24.

    Swinehart DF (1962) The Beer-Lambert Law. J Chem Educ 39:333. https://doi.org/10.1021/ed039p333

    CAS  Article  Google Scholar 

  25. 25.

    Saadeldin M, Soliman HS, Ali HAM, Sawaby K (2014) Optical and electrical characterizations of nanoparticle Cu2S thin films. Chinese Physics B 23:046803. https://doi.org/10.1088/1674-1056/23/4/046803

    CAS  Article  Google Scholar 

  26. 26.

    Swanepoel R (1983) Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E: Scientific Instruments 16:1214–1222. https://doi.org/10.1088/0022-3735/16/12/023

    CAS  Article  Google Scholar 

  27. 27.

    Forouhi AR, Bloomer I (1988) Optical properties of crystalline semiconductors and dielectrics. Phys Rev B 38:1865–1874. https://doi.org/10.1103/PhysRevB.38.1865

    CAS  Article  Google Scholar 

  28. 28.

    Mansour AM, Abou Hammad AB, El Nahrawy AM (2021) Sol–gel synthesis and physical characterization of novel MgCrO4-MgCu2O3 layered films and MgCrO4-MgCu2O3/p-Si based photodiode. Nano-Structures & Nano-Objects 25:100646. https://doi.org/10.1016/j.nanoso.2020.100646

    Article  Google Scholar 

Download references

Acknowledgments

The work was not financially supported, and the National Research Centre of Egypt facilitates the work and the characterization tools.

Author Contribution Statement

Amany Mohamed El Nahrawy: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

A.M. Mansour and Ali B. Abou Hammad: Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding

Authors declare that this article has not any supported and the authors completely supported their article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali B. Abou Hammad.

Ethics declarations

Conflict of Interest

The authors announce that they have no conflict of interest.

Ethical Approval

This research doesn’t involving Human Participants and/or Animals.

Consent to Participate

Authors confirm their participation.

Consent for Publication

The authors confirm their acceptance for Publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Nahrawy, A.M., Abou Hammad, A.B. & Mansour, A.M. Preparation and Characterization of Transparent Semiconducting Silica Nanocomposites Doped with P2O5 and Al2O3. Silicon (2021). https://doi.org/10.1007/s12633-021-00962-3

Download citation

Keywords

  • Transparent semiconducting
  • Nanocomposites
  • Sol-gel
  • Silica
  • P2O5, Al2O3