A Novel Approach on Reusing Silicon Wafer Kerf Particle as Potential Filler Material in Polymer Composite

Abstract

In solar panel production stage, it is unavoidable to neglect the huge amount of solar grade silicon particles displaced during the slicing of silicon ingot operation. A subject of the present study is to reuse the solar-grade silicon particles as a filler to enhance the mechanical properties of the epoxy-glass fiber polymer composite. Polymer composite was fabricated using a hand-layup method with constant hydraulic pressure by varying filler weight percentages of 0, 1, 3, 5, and 10 %. Particle size and mineralogical features of the recovered silicon particle were characterized by particle size analyser and X-ray diffraction analysis. A positive effect on the mechanical properties of the prepared composites is seen by the recovered silicon particle addition. Maximum tensile strength of 284 MPa has been achieved for the < 10 µm particle with a 5 % weight of silicon filler loaded composite. Both the flexural strength and the hardness of the composites were improved linearly by the addition of the filler material. The dielectric constant is considerably improved by incorporating recovered silicon filler into the epoxy polymer composite. There is a comparatively higher dielectric constant value of 5.96 in a fine silicon particle-filled composite than in a coarse silicon particle-filled composite of 4.8. The sustainable use of silicon wafer cutting particles in polymer composites would mitigate the problems of pollution and minimise the cost of silicon wafer waste disposal as well. This brings up the solution to recycling of silicon wafer cutting waste for a sustainable environment.

This is a preview of subscription content, access via your institution.

Data Availability

Not applicable.

References

  1. 1.

    Jaunich MK, DeCarolis J, Handfield R, Kemahlioglu-Ziya E, Ranjithan SR, Moheb-Alizadeh H (2020) Life-cycle modeling framework for electronic waste recovery and recycling processes. Resour Conserv Recycl 161:104841. https://doi.org/10.1016/j.resconrec.2020.104841

    Article  Google Scholar 

  2. 2.

    Gonen C, Kaplanoglu E (2019) Environmental and economic evaluation of solar panel wastes recycling. Waste Manag Res 37:412–418. https://doi.org/10.1177/0734242X19826331

    Article  PubMed  Google Scholar 

  3. 3.

    Vaccari M, Tudor T, Perteghella A (2018) Costs associated with the management of waste from healthcare facilities: An analysis at national and site level. Waste Manag Res 36:39–47. https://doi.org/10.1177/0734242X17739968

    Article  PubMed  Google Scholar 

  4. 4.

    Das D, Mukherjee S, Chaudhuri MG (2020) Studies on leaching characteristics of electronic waste for metal recovery using inorganic and organic acids and base. Waste Manag Res. https://doi.org/10.1177/0734242X20931929

    Article  PubMed  Google Scholar 

  5. 5.

    Ilankoon I, Ghorbani Y, Chong MN, Herath G, Moyo T, Petersen J (2018) E-waste in the international context–A review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Manag 82:258–275. https://doi.org/10.1016/j.wasman.2018.10.018

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Corcelli F, Ripa M, Ulgiati S (2017) End-of-life treatment of crystalline silicon photovoltaic panels. An emergy-based case study. J Clean Prod 161:1129–1142. https://doi.org/10.1016/j.jclepro.2017.05.031

    Article  Google Scholar 

  7. 7.

    Kong J, Xing P, Liu Y, Wang J, Jin X, Feng Z, Luo X (2019) An economical approach for the recycling of high-purity silicon from diamond-wire saw kerf slurry waste. Silicon 11:367–376. https://doi.org/10.1007/s12633-018-9889-x

    CAS  Article  Google Scholar 

  8. 8.

    Cao F, Chen K, Zhang J, Ye X, Li J, Zou S, Su X (2015) Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency. Sol Energy Mater Sol Cells 141:132–138. https://doi.org/10.1016/j.solmat.2015.05.030

    CAS  Article  Google Scholar 

  9. 9.

    Tomono K, Miyamoto S, Ogawa T, Furuya H, Okamura Y, Yoshimoto M, Komatsu R, Nakayama M (2013) Recycling of kerf loss silicon derived from diamond-wire saw cutting process by chemical approach. Sep Purif Technol 120:304–309. https://doi.org/10.1016/j.seppur.2013.10.014

    CAS  Article  Google Scholar 

  10. 10.

    Lu T, Tan Y, Li J, Deng D (2018) Recycling of silicon powder waste cut by a diamond-wire saw through laser-assisted vacuum smelting. J Clean Prod 203:574–584. https://doi.org/10.1016/j.jclepro.2018.08.226

    CAS  Article  Google Scholar 

  11. 11.

    Zhou Q, Wen J, Wu J, Ma W, Xu M, Wei K, Xu J (2019) Recovery and purification of metallic silicon from waste silicon slag in electromagnetic induction furnace by slag refining method. J Clean Prod 229:1335–1341. https://doi.org/10.1016/j.jclepro.2019.05.071

    CAS  Article  Google Scholar 

  12. 12.

    Wu Y-F, Chen Y-M (2009) Separation of silicon and silicon carbide using an electrical field. Sep Purif Technol 68:70–74. https://doi.org/10.1016/j.seppur.2009.04.009

    CAS  Article  Google Scholar 

  13. 13.

    Lin Y-C, Tai CY (2010) Recovery of silicon powder from kerfs loss slurry using phase-transfer separation method. Sep Purif Technol 74:170–177. https://doi.org/10.1016/j.seppur.2010.06.002

    CAS  Article  Google Scholar 

  14. 14.

    Tsai T-H (2011) Modified sedimentation system for improving separation of silicon and silicon carbide in recycling of sawing waste. Sep Purif Technol 78:16–20. https://doi.org/10.1016/j.seppur.2011.01.011

    CAS  Article  Google Scholar 

  15. 15.

    De Sousa M, Vardelle A, Mariaux G, Vardelle M, Michon U, Beudin V (2016) Use of a thermal plasma process to recycle silicon kerf loss to solar-grade silicon feedstock. Sep Purif Technol 161:187–192. https://doi.org/10.1016/j.seppur.2016.02.005

    CAS  Article  Google Scholar 

  16. 16.

    Li J, Lin Y, Shi J, Ban B, Sun J, Ma Y, Wang F, Lv W, Chen J (2020) Recovery of high purity Si from kerf-loss Si slurry waste by flotation method using PEA collector. Waste Manag 115:1–7. https://doi.org/10.1016/j.wasman.2020.07.023

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Zhang Y, Sheng W, Huang L, Zhang C, Tang X, Luo X (2020) Recovery of silicon kerf waste from diamond wire sawing by two-step sintering and acid leaching method. J Clean Prod 121911. https://doi.org/10.1016/j.jclepro.2020.121911

  18. 18.

    Park SM, Yang BJ, Kim BR, Ha SK, Lee H-K (2017) Structural strengthening and damage behaviors of hybrid sprayed fiber-reinforced polymer composites containing carbon fiber cores. Int J Damage Mech 26:358–376. https://doi.org/10.1177/1056789516673887

    CAS  Article  Google Scholar 

  19. 19.

    Abliz D, Duan Y, Steuernagel L, Xie L, Li D, Ziegmann G (2013) Curing methods for advanced polymer composites - a review. Polym Polym Compos 21:341–348. https://doi.org/10.1177/096739111302100602

    CAS  Article  Google Scholar 

  20. 20.

    Sabarinathan P, Rajkumar K, Annamalai VE, Vishal K (2020) Static and dynamic behavior of micrometric agro Prunus amygdalus particulate distributed interpolymer layer-kenaf composite. Polym Compos 41:3309–3321. https://doi.org/10.1002/pc.25621

    CAS  Article  Google Scholar 

  21. 21.

    Friedrich K, Zhang Z, Schlarb AK (2005) Effects of various fillers on the sliding wear of polymer composites. Compos Sci Technol 65:2329–2343. https://doi.org/10.1016/j.compscitech.2005.05.028

    CAS  Article  Google Scholar 

  22. 22.

    Mantry S, Satapathy A, Jha AK, Singh SK, Patnaik A (2011) Preparation, characterization and erosion response of jute-epoxy composites reinforced with SiC derived from rice husk. Int J Plast Technol 15:69–76. https://doi.org/10.1007/s12588-011-9007-z

    CAS  Article  Google Scholar 

  23. 23.

    Sasikumar M, Balaji R, Vinothkumar M (2019) Nanoparticles-coated glass fibre–based damage localisation and monitoring system for polymer composites. Struct Health Monit 18:1141–1153. https://doi.org/10.1177/1475921718788807

    Article  Google Scholar 

  24. 24.

    Chandramohan D, Murali B, Vasantha-Srinivasan P, Kumar SD (2019) Mechanical, moisture absorption, and abrasion resistance properties of bamboo–jute–glass fiber composites. J Bio-and Tribo-Corrosion 5:66. https://doi.org/10.1007/s40735-019-0259-z

    Article  Google Scholar 

  25. 25.

    Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: A state of art review and future applications. Compos Part B Eng 115:409–422. https://doi.org/10.1016/j.compositesb.2016.09.013

    CAS  Article  Google Scholar 

  26. 26.

    Nayak SK, Satapathy A, Mantry S (2020) Processing and wear response study of glass-polyester composites with waste marble dust as particulate filler. Polym Compos 41:2263–2273. https://doi.org/10.1002/pc.25537

    CAS  Article  Google Scholar 

  27. 27.

    Choudhary M, Singh T, Dwivedi M, Patnaik A (2019) Waste marble dust-filled glass fiber‐reinforced polymer composite Part I: Physical, thermomechanical, and erosive wear properties. Polym Compos 40:4113–4124. https://doi.org/10.1002/pc.25272

    CAS  Article  Google Scholar 

  28. 28.

    Sabarinathan P, Annamalai VE, Rajkumar K (2019) Evaluation of thermal stability and damping behavior of electrical insulator waste reinforced thermoset polymer composite. Proc Inst Mech Eng Part C J Mech Eng Sci 233:3603–3618. https://doi.org/10.1177/0954406218823229

    CAS  Article  Google Scholar 

  29. 29.

    Erdogan A, Gok MS, Koc V, Gunen A (2019) Friction and wear behavior of epoxy composite filled with industrial wastes. J Clean Prod 237:117588. https://doi.org/10.1016/j.jclepro.2019.07.063

    CAS  Article  Google Scholar 

  30. 30.

    Singh G, Kumar H, Singh S (2019) Performance evaluation-PET resin composite composed of red mud, fly ash and silica fume. Constr Build Mater 214:527–538. https://doi.org/10.1016/j.conbuildmat.2019.04.127

    CAS  Article  Google Scholar 

  31. 31.

    Dobransky J, Behalek L, Baron P, Kocisko M, Dulebova L, Dobos Z (2019) The influence of the use of technological waste on the mechanical behavior of fibrous polymer composite. Compos Part B Eng 166:162–168. https://doi.org/10.1016/j.compositesb.2018.12.003

    CAS  Article  Google Scholar 

  32. 32.

    Erklig A, Alsaadi M, Bulut M (2016) A comparative study on industrial waste fillers affecting mechanical properties of polymer-matrix composites. Mater Res Express 3:105302. https://doi.org/10.1088/2053-1591/3/10/105302

    CAS  Article  Google Scholar 

  33. 33.

    Kalusuraman G, Kumaran ST, Aslan M, Kucukomerogluc T, Siva I (2019) Use of waste copper slag filled jute fiber reinforced composites for effective erosion prevention. Measurement 148:106950. https://doi.org/10.1016/j.measurement.2019.106950

    Article  Google Scholar 

  34. 34.

    Kumar GBV, Mageshvar R, Rejath R, Karthik S, Pramod R, Rao CSP (2019) Characterization of glass fiber bituminous coal tar reinforced Polymer Matrix Composites for high performance applications. Compos Part B Eng 175:107156. https://doi.org/10.1016/j.compositesb.2019.107156

    CAS  Article  Google Scholar 

  35. 35.

    Açıkbaş G, Ozcan S, Çalış Açıkbaş N (2018) Production and characterization of a hybrid polymer matrix composite. Polym Compos 39:4080–4093. https://doi.org/10.1002/pc.24471

    CAS  Article  Google Scholar 

  36. 36.

    Zhang J, Qi S (2014) Mechanical, thermal, and dielectric properties of aluminum nitride/glass fiber/epoxy resin composites. Polym Compos 35:381–385. https://doi.org/10.1002/pc.22671

    CAS  Article  Google Scholar 

  37. 37.

    Pichaimani P, Krishnan S, Song J-K, Muthukaruppan A (2018) Bio-silicon reinforced siloxane core polyimide green nanocomposite with multifunctional behavior. High Perform Polym 30:549–560. https://doi.org/10.1177/0954008317709891

    CAS  Article  Google Scholar 

  38. 38.

    Davachi SM, Heidari BS, Sahraeian R, Abbaspourrad A (2019) The effect of nanoperlite and its silane treatment on the crystallinity, rheological, optical, and surface properties of polypropylene/nanoperlite nanocomposite films. Compos Part B Eng 175:107088. https://doi.org/10.1016/j.compositesb.2019.107088

    CAS  Article  Google Scholar 

  39. 39.

    Hossion MA, Arora BM (2020) Synthesis of boron-doped silicon film using hot wire chemical vapor deposition technique. Crystals 10:237. https://doi.org/10.3390/cryst10040237

    CAS  Article  Google Scholar 

  40. 40.

    Ge M, Rong J, Fang X, Zhang A, Lu Y, Zhou C (2013) Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res 6:174–181. https://doi.org/10.1007/s12274-013-0293-y

    CAS  Article  Google Scholar 

  41. 41.

    Rajkumar K, Vishal K, Sabarinathan P (2020) Tribological properties of PEEK reinforced with synthetic diamond composite. Trends Manuf Eng Manag 371–380. https://doi.org/10.1007/978-981-15-4745-4_33

  42. 42.

    Agarwal G, Patnaik A, Sharma RK (2014) Thermo-mechanical properties and abrasive wear behavior of silicon carbide filled woven glass fiber composites. Silicon 6:155–168. https://doi.org/10.1007/s12633-014-9184-4

    CAS  Article  Google Scholar 

  43. 43.

    Saenz-Castillo D, Martín MI, Calvo S, Rodriguez-Lence F, Güemes A (2019) Effect of processing parameters and void content on mechanical properties and NDI of thermoplastic composites. Compos Part A Appl Sci Manuf 121:308–320. https://doi.org/10.1016/j.compositesa.2019.03.035

    CAS  Article  Google Scholar 

  44. 44.

    Prakash VRA, Rajadurai A (2016) Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite. Appl Surf Sci 384:99–106. https://doi.org/10.1016/j.apsusc.2016.04.185

    CAS  Article  Google Scholar 

  45. 45.

    Slipenyuk A, Kuprin V, Milman Y, Goncharuk V, Eckert J (2006) Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio. Acta Mater 54:157–166. https://doi.org/10.1016/j.actamat.2005.08.036

    CAS  Article  Google Scholar 

  46. 46.

    Deepa KS, Sebastian MT, James J (2007) Effect of interparticle distance and interfacial area on the properties of insulator-conductor composites. Appl Phys Lett 91:202904. https://doi.org/10.1063/1.2807271

    CAS  Article  Google Scholar 

  47. 47.

    Antil P, Singh S, Manna A (2018) Glass fibers/SiCp reinforced epoxy composites: effect of environmental conditions. J Compos Mater 52:1253–1264. https://doi.org/10.1177/0021998317723448

    CAS  Article  Google Scholar 

  48. 48.

    Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39:933–961. https://doi.org/10.1016/j.compositesb.2008.01.002

    CAS  Article  Google Scholar 

  49. 49.

    Ramraji K, Rajkumar K, Sabarinathan P (2019) Tailoring of tensile and dynamic thermomechanical properties of interleaved chemical-treated fine almond shell particulate flax fiber stacked vinyl ester polymeric composites. Proc IMechE Part J Mater Des Appl 233:2311–2322. https://doi.org/10.1177/1464420719849616

    CAS  Article  Google Scholar 

  50. 50.

    Sabarinathan P, Annamalai VE, Rajkumar K (2020) Optimization of process parameter in abrasive water jet machining of blue-fired grain-reinforced glass fiber polymer composite. Trends Manuf Eng Manag 217–226. https://doi.org/10.1007/978-981-15-4745-4_20

  51. 51.

    Withers GJ, Yu Y, Khabashesku VN, Cercone L, Hadjiev VG, Souza JM, Davis DC (2015) Improved mechanical properties of an epoxy glass–fiber composite reinforced with surface organomodified nanoclays. Compos Part B Eng 72:175–182. https://doi.org/10.1016/j.compositesb.2014.12.008

    CAS  Article  Google Scholar 

  52. 52.

    Zhang K, Wang F, Liang W, Wang Z, Duan Z, Yang B (2018) Thermal and mechanical properties of bamboo fiber reinforced epoxy composites. Polymers (Basel) 10:608. https://doi.org/10.3390/polym10060608

    CAS  Article  Google Scholar 

  53. 53.

    Zakaria MR, Akil HM, Kudus MHA, Kadarman AH (2015) Improving flexural and dielectric properties of MWCNT/epoxy nanocomposites by introducing advanced hybrid filler system. Compos Struct 132:50–64. https://doi.org/10.1016/j.compstruct.2015.05.020

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Affiliations

Authors

Contributions

K.M. Nambiraj- Conceptualization, Investigation, Writing- Review & Editing, K. Rajkumar- Resources, Supervision, & Validation, P. Sabarinathan- Data acquisition, Visualization, & Project administration.

Corresponding author

Correspondence to K. Rajkumar.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nambiraj, K.M., Rajkumar, K. & Sabarinathan, P. A Novel Approach on Reusing Silicon Wafer Kerf Particle as Potential Filler Material in Polymer Composite. Silicon (2021). https://doi.org/10.1007/s12633-021-00951-6

Download citation

Keywords

  • Silicon
  • Kerf slurry waste
  • Recovery
  • Polymer composite
  • Strength
  • Dielectric constant