Enhancement of Electrical and Dielectric Properties of Graphene Oxide‐nanoparticle Based Devices


The aim of this work is to invent a novel technology for manufacture not only graphene oxide, but also conductive graphene oxide. This is the novelty in this technology, which is not available in any other method for preparing graphene oxide. This study describes a unique way for preparation of conductive nano-particles of graphene oxide, GO. The advantages of this technology is very simple, low cost, short time of preparation and can be manufacture a large amount of conductive GO by firing polyvinyl alcohol PVA on SiO2/pSi to preparation this assembly GO/SiO2/pSi as a Schottky barrier diode or Metal Oxide Semiconductor, MOS. Besides the pioneering in this article GO is deemed insulator, however with rising temperature through firing PVA, its conductivity remarkably enhances and the produced GO can be used as a conductor. The as-prepared sample has been characterized using different techniques (e.g. Scanning Electron Microscopy (SEM), Raman Spectroscopy, X-Ray diffraction (XRD) and Impedance Spectroscopy. Temperature, voltage and frequency dependences of M’, M’’, 1/C2, Rs, σac and tanδ of GO/SiO2//p-Si diodes were achieved in the varied ranges of voltage and frequency. I-V characteristic of GO/SiO2/pSi Schottky-diode is taken at different temperatures. The elementary factors of the diode such as barrier height (Φb), series resistance (Rs) and ideality factor (n), of GO/SiO2/pSi are also considered. The nyquist plot of M″(M′) at different voltages and temperatures were examined.

This is a preview of subscription content, access via your institution.

Data Availability

All the data and Materials are available by the authors.


  1. 1.

    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

    CAS  Article  Google Scholar 

  2. 2.

    Wang Y, Mo Z, Zhang P et al (2016) Synthesis of flower-like TiO2 microsphere/ graphene composite for removal of organic dye from water. Mater Des 99:378e388. https://doi.org/10.1016/j.matdes.2016.03.066

    CAS  Article  Google Scholar 

  3. 3.

    Lim HN, Huang NM, Loo CH, Facile preparation of graphene-based chitosan films: enhanced thermal, mechanical and antibacterial properties, J NonCryst Solids 358 (2012) 525e530, https://doi.org/10.1016/j.jnoncrysol.2011.11.07

    Article  Google Scholar 

  4. 4.

    Brade RV, Waghuley SA (2013) Preparation and electrical conductivity of novel vanadate borate glass system containing graphene oxide. J Non-Cryst Solids 376:117e125. https://doi.org/10.1016/j.jnoncrysol.2013.05.034

    CAS  Article  Google Scholar 

  5. 5.

    Bonanni A, Pumera M, High-resolution impedance spectroscopy for graphene characterization Electrochem, Commun Now 26 (2013) 52e54, https://doi.org/10.1016/j.elecom.2012.10.013

    CAS  Article  Google Scholar 

  6. 6.

    Castro Neto AH, Guinea F, Peres NMR et al., The electronic properties of graphene, Rev Mod Phys 81 (2009) 109162, https://doi.org/10.1103/RevModPhys.81.109

    CAS  Article  Google Scholar 

  7. 7.

    Shen L, Xiong S, Wang Y (2016) Graphene oxide incorporated thin-film composite membranes for forward osmosis applications. Chem Eng Sci 143:194e205. https://doi.org/10.1016/j.ces.2015.12.029

    CAS  Article  Google Scholar 

  8. 8.

    Kang XJ, Zhang JM, Sun XW et al., One-pot synthesis of vanadium dioxide nanoflowers on graphene oxide, Ceram Int 42 (2016) 7883e7887, https://doi.org/10.1016/j.ceramint.2016.01.170

    CAS  Article  Google Scholar 

  9. 9.

    Munoz J, Montes R, Baeza M, Trends in Electrochemical Impedance Spectroscopy involving nanocomposite transducers: characterization, architecture surface and bio-sensing, Trac Trends Anal Chem 97 (2017) 201e215, https://doi.org/10.1016/j.trac.2017.08.012

    CAS  Article  Google Scholar 

  10. 10.

    Ramos-Ferbandez G, Canal-Rodriguez M, Arenillas A et al (2018) Determinant influence of the electrical conductivity versus surface area on the performance of graphene oxide-doped carbon xerogelsupercapacitors. Carbon 126:456e463. https://doi.org/10.1016/j.carbon.2017.10.025

    CAS  Article  Google Scholar 

  11. 11.

    Meyer JC, Geim AK, Katselson MI et al (2007) On the roughness of single- and bilayer graphene membranes. Solid State Commun 143:101e109. https://doi.org/10.1016/j.ssc.2007.02.047

    CAS  Article  Google Scholar 

  12. 12.

    Perez-Bustamante R, Bolanos-Morales D, Bonilla-Martinez J et al (2014) Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J Alloys Compd 615:5578e5582. https://doi.org/10.1016/j.jallcom.2014.01.225

    CAS  Article  Google Scholar 

  13. 13.

    Jankovsky O, Simek P, Sedminubky D et al (2014) Towards highly electrically conductive and thermally insulating graphenenanocomposites: Al2O3egraphene, RSC Adv 4:7418e7424. https://doi.org/10.1039/c3ra45069d

  14. 14.

    Bhuyan MSA, Uddin MN, Islam MM et al (2016) Synthesis of graphene, Int. Nano Lett 6:65e83. https://doi.org/10.1007/s40089-015-0176-1

    CAS  Article  Google Scholar 

  15. 15.

    Prince JA, Bhuvana S, Anbharasi V et al (2016) Ultra-wetting graphene-based PES ultrafiltration membrane e A novel approach for successful oil-water separation. Water Res 103:311e318

    Article  CAS  Google Scholar 

  16. 16.

    Ashery A, Farag AAM, Moussa MA, Turky GM (2020) Enhancement of electrical and dielectrically performance of graphene-based promise electronic devices. Synth Met 261:116303. https://doi.org/10.1016/j.synthmet.2020.116303

    CAS  Article  Google Scholar 

  17. 17.

    Ashery, AAM.Farag, MA, Moussad GM, Turky (2021) Electrical performance of nanocrystalline graphene oxide/SiO2-based hybrid heterojunction device. Mater Sci Semicond Process 21:105415. https://doi.org/10.1016/j.mssp.2020.105415

    CAS  Article  Google Scholar 

  18. 18.

    Ha H, Ellison CJ, Polymer/graphene oxide (GO) thermoset composites with GO as a crosslinker, Kor. J Chem Eng 35 (2018) 303e317, https://doi.org/10.1007/s11814-017-0250-7

    CAS  Article  Google Scholar 

  19. 19.

    Mkhoyan K, Contryman A, Silcox J et al., Atomic and electronic structure of graphene-oxide, Nano Lett 9 (2009) 1058e1063, https://doi.org/10.1021/nl8034256

    CAS  Article  Google Scholar 

  20. 20.

    Wan Y, Lin Z, Zhang D et al (2011) Impedimetric immune-sensor doped with reduced graphene sheets fabricated by controllable electro-deposition for the non-labelled detection of bacteria. Biosens Boielectron 26:1959e1964. https://doi.org/10.1016/j.bios.2010.08.008

    CAS  Article  Google Scholar 

  21. 21.

    Lingamdinne LP, Koduru JR, Roh H, Choi YL, Chang YY, YK Yang Adsorption removal of Co(II) from waste-water using graphene oxide, Hydrometallurgy 165 (2016) 90e96, https://doi.org/10.1016/j.hydromet.2015.10.021

    CAS  Article  Google Scholar 

  22. 22.

    Ch’ng YY, Loh KS, Daud WRW, Mohamad AB (2016) Synthesis and characterization of sulfonated graphene oxide nanofiller for polymer electrolyte membrane. Mater Sci Eng 160:012035. https://doi.org/10.1088/1757-899X/160/1/012035

    Article  Google Scholar 

  23. 23.

    Ritter KA, Lyding JW (2009) The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater 8:235e242. https://doi.org/10.1038/nmat2378

    CAS  Article  Google Scholar 

  24. 24.

    Bhuyan MSA, Uddin MN, Islam MM et al (2016) Synthesis of graphene. Int Nano Lett 6:65e83. https://doi.org/10.1007/s40089-015-0176-1

    CAS  Article  Google Scholar 

  25. 25.

    Shin Y, Prestat E, Zhou K, Gorgojo P et al., Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporosity, Carbon 102 (2016) 357e366, https://doi.org/10.1016/j.carbon.2016.02.037

    CAS  Article  Google Scholar 

  26. 26.

    Zhao W, Chen W, Yue Y, Wu S (2017) In-situ two-step Raman thermometry for thermal characterization of monolayer graphene interface material. Appl Them Eng 113:481e489. https://doi.org/10.1016/j.applthermaleng.2016.11.063

    CAS  Article  Google Scholar 

  27. 27.

    Karatas S, Kara Z (2011) Temperature dependent electrical and dielectric properties of Sn/p-Si metal–semiconductor (MS) structures. Microelectron Reliab 51:2205–2209

    CAS  Article  Google Scholar 

  28. 28.

    Yucedağ I, Kaya A, Altındal Ş, Uslu I (2014) Electrical and dielectric properties and intersection behavior of G/ω-V plots for Al/Co-PVA/p-Si (MPS) structures at temperatures below room temperature. J Korean Phys Soc 65:2082–2089

    Article  CAS  Google Scholar 

  29. 29.

    Elfaleh N, Kamoun S (2015) Dielectric relaxation and ionic conductivity studies of (C6H20N3)BiCl6·H2O. Ionics 21:2685–2692

    CAS  Article  Google Scholar 

  30. 30.

    Azizian -Kalandrgh Y, Aydemir U, Altindal Ş (2014) Dielectric and optical properties of CdS–polymer nanocomposites prepared by the successive ionic layer adsorption and reaction (SILAR) method. J Electron Mater 43:1226–1231

    Article  CAS  Google Scholar 

  31. 31.

    Güçlü ÇŞ, Özdemir AF, Kökce A, Altindal Ş (2016) Frequency and voltage-dependent dielectric properties and AC electrical conductivity of (Au/Ti)/Al2O3/n-GaAs with thin Al2O3 interfacial layer at room temperature. Acta Phys Pol A 130:43827

    Article  Google Scholar 

  32. 32.

    Jonscher AK, Robinson MN (1988) Dielectric spectroscopy of silicon barrier devices. Solid State Electron 31:1277–1288

    CAS  Article  Google Scholar 

  33. 33.

    Penin NA (1996) Negative capacitance in semiconductor structures. Semiconductors 30:340–343

    Google Scholar 

  34. 34.

    Demirezen S (2013) Frequency- and voltage-dependent dielectric properties and electrical conductivity of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes at room temperature. Appl Phys A 112:827–833

    CAS  Article  Google Scholar 

  35. 35.

    Chatterjee B, Kulshrestha N, Gupta PN (2016) Nano composite solid polymer electrolytes based on biodegradable polymers starch and poly vinyl alcohol. Measurement 82:490–499

    Article  Google Scholar 

  36. 36.

    Symth CP (1955) Dielectric behaviour and structure. McGraw-Hill, New York

    Google Scholar 

  37. 37.

    Çetinkaya HG, Alialy S, Altındal Ş, Kaya A, Uslu I (2015) Investigation of negative dielectric constant in Au/1 % graphene (GP) doped-Ca1.9Pr0.1Co4Ox/n-Si structures at forward biases using impedance spectroscopy analysis. J Mater Sci Mater Electron 26:3186–3195

    Article  CAS  Google Scholar 

  38. 38.

    Çetinkaya HG, Yıldırım M, Durmus P, Altındal S (2017) J Alloy Compd 728:896–901

    Article  CAS  Google Scholar 

  39. 39.

    Sattar AA, Rahman SA (2003) Phys Status Sol A 200:415–422

    CAS  Article  Google Scholar 

  40. 40.

    Dutta P, Biswas S, De SK (2002) Mater Res Bull 37:193–200

    CAS  Article  Google Scholar 

  41. 41.

    Bidault O, Goux P, Kchikech M, Belkaoumi M, Maglione M (1994) Phys Rev B 49:7868–7873

    CAS  Article  Google Scholar 

  42. 42.

    Altındal Yeriskin S, Ünal HI, Sarı B (2011) J Appl Polym Sci 120:390

    Article  CAS  Google Scholar 

  43. 43.

    Safak Asar Y, Asar T, Altındal S, Özçelik S (2015) J Alloys Compd 628:442

    CAS  Article  Google Scholar 

  44. 44.

    Hoque MdM, Duta A, Kumar S, Sinha TP (2014) J Mater Sci Technol 30:311–320

    CAS  Article  Google Scholar 

  45. 45.

    Pradhan D, Samantaray B, Choudhary R, Thakur A (2005) Complex impedance analysis of layered perovskite structure electroceramics—NaDyTiO4. J Mater Sci 40(20):5419–5425

    CAS  Article  Google Scholar 

  46. 46.

    Singh G, Tiwari V (2009) Effect of Zr concentration on conductivity behavior of (1 – x) PMN-xPZ ceramic: An impedance spectroscopy analysis. J Appl Phys 106(12):124104

    Article  CAS  Google Scholar 

  47. 47.

    Amin M, Rafique HM, Yousaf M, Ramay SM, Atiq S (2016) Structural and impedance spectroscopic analysis of Sr/Mn modified BiFeO3 multiferroics. J Mater Sci - Mater Electron 27(10):11003–11011

    CAS  Article  Google Scholar 

  48. 48.

    Kar S, Panchal KM, Bhattacharya S, Varma S (1982) IEEE Trans Electron Devices 29(12):1839

    Article  Google Scholar 

  49. 49.

    Nicollian EH, Brews JR (1967) Bell Syst Tech J 46:1055; 32. K.K. Hung YC, Cheng, J (1987) Appl Phys 62:4204

  50. 50.

    Akkal B, Benamara Z, Gruzza B, Bideux L (2000) Vacuum 57:219

    CAS  Article  Google Scholar 

  51. 51.

    Çankaya G, Ucar N, Turut A (2000) Int J Electron 87:1171e1176

    Article  Google Scholar 

  52. 52.

    Cutroni M, Mandanici A, Piccolo A, Fanggao C, Saunders GA, Mustarelli P (1996) Solid State Electron 90:167

    CAS  Google Scholar 

  53. 53.

    Migahed MD, Ishra M, Fahmy T, Barakat A (2004) J Phys Chem Solids 65:1121

    CAS  Article  Google Scholar 

  54. 54.

    Szu SP, Lin CY (2003) Mater Chem Phys 82:295

    CAS  Article  Google Scholar 

  55. 55.

    Maurya D, Kumar J, Shripal (2005) J Phys Chem Solids 66:1614

    CAS  Article  Google Scholar 

  56. 56.

    Sattar AA, Rahman SA (2003) Phys Status Solidi A 200(2):415

  57. 57.

    Rahman ASMdS, Islam MH, Hogarth CA (1987) Int J Electron 62(2):167

    CAS  Article  Google Scholar 

  58. 58.

    Riad AS, Korayem MT, Abdel-Malik TG (1999) Phys B 270:140

    CAS  Article  Google Scholar 

  59. 59.

    Morales-Acosta MD, Alvarado-Beltran CG, Quevedo-Lopez MA, Gnade BE, Mendoza-Galvan A, Ramírez-Bon R (2013) Adjustable structural, optical and dielectric characteristics in solegel PMMAeSiO2 hybrid films. J Non-Cryst Solids 362:124e135

    Article  CAS  Google Scholar 

  60. 60.

    Jonscher AK (1999) Dielectric relaxation in solids. J Phys D Appl Phys 32 (14):R57eR70

  61. 61.

    Rani R, Kumar G, Batoo KM, Singh M (2014) Influence of temperature on the electric, dielectric and AC conductivity properties of nano-crystalline zinc substituted cobalt ferrite synthesized by solution combustion technique. Appl Phys A 115:1401e1407

    Article  CAS  Google Scholar 

  62. 62.

    Vijay Kumar T, Sadananda Chary A, Bhardwaj S, Awasthi AM, Narender S, Reddy (2013) Dielectric relaxation, ionic conduction and complex impedance studies on NaNO3 fast ion conductor. Int J Mater Sci Appl 2(6):173e178

    Google Scholar 

  63. 63.

    Mohanty S, Choudhary RNP, Parida BN, Padhee R (2014) Structural and electrical characterization of BiFeO3eNaTaO3 multiferroic. Appl Phys A 116(4):1833e1840

    Article  CAS  Google Scholar 

  64. 64.

    Panda N, Pattanayak S, Choudhary RNP (2015) Structural and electrical properties of BiFeO3ePbTiO3 system. J Mater Sci Mater Electron 26(6):4069e407

    Google Scholar 

  65. 65.

    Korucu D, Duman S (2013) Current–voltage–temperature characteristics of Au/p-InP Schottky barrier diode. Thin Solid Films 531:436–441

    CAS  Article  Google Scholar 

  66. 66.

    Çınar K et al (2014) Electrochemical growth of GaTe onto the p-type Si substrate and the characterization of the Sn/GaTe Schottky diode as a function of temperature. Thin Solid Films 550:40–45

    Article  CAS  Google Scholar 

  67. 67.

    Reddy VR (2014) Electrical properties of Au/polyvinylidene fluoride/n-InP Schottky diode with polymer interlayer. Thin Solid Films 556:300–306

    CAS  Article  Google Scholar 

  68. 68.

    Korucu D, Turut A, Efeoglu H (2013) Temperature dependent I–V characteristics of an Au/n-GaAs Schottky diode analyzed using Tung’s model. Physica B 414:35–41

    CAS  Article  Google Scholar 

  69. 69.

    Dogan H, Elagoz S (2014) Temperature-dependent electrical transport properties of (Au/Ni)/n-GaN Schottky barrier diodes. Physica E 63:186–192

    CAS  Article  Google Scholar 

  70. 70.

    Tunhuma SM et al (2016) The effect of high temperatures on the electrical characteristics of Au/n-GaAs Schottky diodes. Physica B 480:201–205

    CAS  Article  Google Scholar 

Download references


The authors would like to express their appreciation to the members of their team at Physics Division, NRC for access, support and assistance throughout this work.

Author information




A. Ashery and G.M. Turky, designed the study and performed the experiments of structure analysis. A. Ashery, M.A. Moussa and G.M. Turky, performed the experiments, designed the figures and explained the electrical properties. A. Ashery and M.A. Moussa, designed the figures and analyzed spectra. A. Ashery drafted the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to A. Ashery.

Ethics declarations

As corresponding author, I A. Ashery, hereby confirm on behalf of all authors that: (1) This manuscript has not been published, was not, and is not being submitted to any other journal. If presented at a conference, the conference is identified. If published in conference proceedings, substantial justification for re-publication must be presented. (2) All necessary permissions for publication were secured prior to submission of the manuscript.

The authors declare that they have no known personal relationships that could have appeared to influence the work reported in this paper.

Conflict of Interest

The authors declare that they have no known competing financial interests.

Consent to Participate

As corresponding author, A. Ashery, hereby confirm on behalf of all authors that: All authors listed have made a significant contribution to the research reported and have read and approved the submitted manuscript, and furthermore, all those who made substantive contributions to this work have been included in the author list. 

Consent for Publication

All authors listed accept the publication in this journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashery, A., Moussa, M.A. & Turky, G.M. Enhancement of Electrical and Dielectric Properties of Graphene Oxide‐nanoparticle Based Devices. Silicon (2021). https://doi.org/10.1007/s12633-021-00943-6

Download citation


  • Schottky diode
  • Thermionic emission
  • Capacity
  • Graphene oxide
  • PVA –nyquist plot