Influence of Titanium Content on Thermal, Mechanical and Corrosion Behaviour Anomalies of Nickel-Molybdenum-Silicate Bulk Metallic Glasses

Abstract

This work discussed the correlation between structural, mechanical, and corrosion studies variation on the milling time of (Ni75Mo15Si10)100-xTix (x = 0, 3, 6, and 9 at.%, labeled as Tix) BMG Powder system. Rietveld’s refinement analysis is used to analyze the full pattern matching of all the powder mixtures, which helped to obtain lattice parameters, average crystallite size, and micro-strain etc. The optimum substitution of titanium content about 6 at.% in the (Ni75Mo15Si10)100-xTix BMG network (Ti6 sample) exhibits the best glass-forming ability (GFA) relatively and reduced glass transition temperature (Trg), thermal stability, mechanical and corrosive resistant properties. The corrosion behaviour of all these samples is measured via electrochemical potentiodynamic polarization method. We also aim at how the Ti content affects Ni-Mo-Si BMG network’s corrosion resistance to be used as potential material for lightweight vehicle applications.

This is a preview of subscription content, access via your institution.

Data Availability

Data and material will be available on demand.

References

  1. 1.

    Inoue A, Wang X, Zhang W (2008). Rev Adv Mater Sci 18:1–9

    CAS  Google Scholar 

  2. 2.

    Chen M (2011). NPG NPG Asia Mater 3:82–90

    Article  Google Scholar 

  3. 3.

    Hofmann DC (2013). J Mater 2013:517904

    Google Scholar 

  4. 4.

    Suryanarayana C, Inoue A (2013). Int Mater Rev 58:131–166

    CAS  Article  Google Scholar 

  5. 5.

    Nieh T, Wadsworth J, Scripta (2006). Mater 54:387–392

    CAS  Google Scholar 

  6. 6.

    Hitit A, Şahin H, Öztürk P, Aşgın AM (2015). Metals 5:162–171

    Article  Google Scholar 

  7. 7.

    Zhang Y, Yao J, Zhao X, Ma L (2019). J Alloy Comp 773:713–718

    CAS  Article  Google Scholar 

  8. 8.

    Nishiyama N, Takenaka K, Miura H, Saidoh N, Zeng Y, Inoue A (2012). Intermetallics 30:19–24

    CAS  Article  Google Scholar 

  9. 9.

    Li Q, Li J, Gong P, Yao K, Gao J, Li H (2012). Intermetallics 26:62–65

    Article  Google Scholar 

  10. 10.

    Jiang JZ, Hofmann D, Jarvis DJ, Fecht HJ (2015). Adv Eng Mater 17:761–780

    CAS  Article  Google Scholar 

  11. 11.

    Na JH, Demetriou MD, Floyd M, Hoff A, Garrett GR, Johnson WL (2014). Proc Natl Acad Sci USA 111:9031–9036

    CAS  Article  Google Scholar 

  12. 12.

    Ma X, Zhen N, Guo J, Li Q, Chang C, Sun Y (2016). J Non-Cryst Solids 443:91–96

    CAS  Article  Google Scholar 

  13. 13.

    Yang Y, Cheng B, Lv J, Li B, Ma M, Zhang X, Li G, Liu R (2019). Mater Sci Eng A 746:229–238

    CAS  Article  Google Scholar 

  14. 14.

    Wang W-H, Dong C, Shek C (2004). Mater Sci Eng R Rep 44:45–89

    Article  Google Scholar 

  15. 15.

    He Q, Shang JK, Ma E, Xu J (2012). Acta Mater 60:4940–4949

    CAS  Article  Google Scholar 

  16. 16.

    Shao L, Zhang T, Li L, Zhao Y, Huang J, Liaw PK, Zhang Y (2018). J Mater Eng Perform 27:6648–6656

    CAS  Article  Google Scholar 

  17. 17.

    Khajepour M, Sharafi S (2011). J Alloy Comp 509:7729–7737

    CAS  Article  Google Scholar 

  18. 18.

    Neamţu B, Marinca T, Chicinaş I, Isnard O, Popa F (2015). Adv Powder Technol 26:323–328

    Article  Google Scholar 

  19. 19.

    Suryanarayana C (2019). Research 2019:4219812

    CAS  Article  Google Scholar 

  20. 20.

    Toozandehjani M, Matori KA, Ostovan F, Abdul Aziz S, Mamat MS (2017). Mater 10(11):1232

    Article  Google Scholar 

  21. 21.

    Lee P, Liu W, Lin C, Huang J (2007). Mater Sci Eng A 449:1095–1098

    Article  Google Scholar 

  22. 22.

    Yao D, Deng L, Zhang M, Wang X, Tang N, Li J (2015) A size-dependent constitutive model of bulk metallic glasses in the supercooled liquid region. Sci Rep 5:8083

    CAS  Article  Google Scholar 

  23. 23.

    Sriharitha R, Murty B, Kottada RS (2014). J Alloy Comp 583:419–426

    CAS  Article  Google Scholar 

  24. 24.

    Takeuchi A, Inoue A (2005). Mater Trans 46:2817–2829

    CAS  Article  Google Scholar 

  25. 25.

    Turnbull D (1969). Contemp Phys 10:473–488

    CAS  Article  Google Scholar 

  26. 26.

    Park E, Kim D, Ohkubo T, Hono K (2005) Enhancement of glass forming ability and plasticity by addition of Nb in Cu–Ti–Zr–Ni–Si bulk metallic glasses. J Non-Cryst Solids 351:1232–1238

    CAS  Article  Google Scholar 

  27. 27.

    Cao D, Wu Y, Liu X, Wang H, Wang X, Lu Z (2019) Enhancement of glass-forming ability and plasticity via alloying the elements having positive heat of mixing with Cu in Cu48Zr48Al4 bulk metallic glass. J. Alloy. Comp. 777:382–391

    CAS  Article  Google Scholar 

  28. 28.

    Chen N, Martin L, Luzguine-Luzgin DV, Inoue A (2010). Mater 3:5320–5339

    CAS  Article  Google Scholar 

  29. 29.

    Jang JS, Wu K, Jian S, Hsieh P, Huang J, Liu C (2011). J Alloy Comp 509:S109–S114

    CAS  Article  Google Scholar 

  30. 30.

    Feng Y, Cai A, Ding D, Liu Y, Wu H, An Q, Ning H, Zhou G, Peng Y (2019). Mater Chem Phys 232:452–459

    CAS  Article  Google Scholar 

  31. 31.

    Zhang T, Inoue A (2002). Mater Trans 43:1367–1370

    CAS  Article  Google Scholar 

  32. 32.

    Cai A, Xiong X, Liu Y, An W, Zhou G, Luo Y, Li T (2012). Mater Chem Phys 134:938–944

    CAS  Article  Google Scholar 

  33. 33.

    Guo S, Liu Z, Chan K, Chen W, Zhang H, Wang J, Yu P (2012). Mater Lett 84:81–84

    CAS  Article  Google Scholar 

  34. 34.

    Sun Y, Chen Q, Li G (2014). J Alloy Comp 584:273–278

    CAS  Article  Google Scholar 

  35. 35.

    Lu H, Zhang L, Gebert A, Schultz L (2008). J Alloy Comp 462:60–67

    CAS  Article  Google Scholar 

  36. 36.

    Fayomi O, Akande I, Popoola A, Popoola SI, Daramola D (2019). J Sci Adv Mater Dev 4:285–289

    Google Scholar 

  37. 37.

    Asami K, Qin C-L, Zhang T, Inoue A (2004). Mater Sci Eng A 375:235–239

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Prof. Jonnalagadda B Srikanth, School of Chemistry and Physics, University of KwaZulu Natal (UKZN), Westville Campus, Durban, South Africa for his kind support to carryout electron microscopy images and analysis.

Author information

Affiliations

Authors

Contributions

Gayatri Tanuja Guddla (Lead) - Conceptualization, Satyadevi Ambadipudi and Gayatri Tanuja Guddla (Lead) - Data duration, Gayatri Tanuja Guddla and Naresh Kumar Katari (Lead) - Methodology, Vamsi Krishna Katta (Lead) - Software, Gayatri Tanuja Guddla, Balaji Rao Ravuri (lead) – Drafting.

Corresponding author

Correspondence to Balaji Rao Ravuri.

Ethics declarations

Conflict of Interest

The author declares that there are no known conflicts of interest associated with this publication.

Research Involving Human Participants and/ or Animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.”

Statement on the Welfare of Animals

This article does not contain any studies with human participants or animals performed by any of the authors.”

Consent to Participate

Participation consent was obtained from all individual participants included in the study.

Consent for Publication

Participation consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guddla, G.T., Ambadipudi, S., Katta, V.K. et al. Influence of Titanium Content on Thermal, Mechanical and Corrosion Behaviour Anomalies of Nickel-Molybdenum-Silicate Bulk Metallic Glasses. Silicon (2021). https://doi.org/10.1007/s12633-020-00841-3

Download citation

Keywords

  • Bulk metallic glasses
  • Mechanical ball milling
  • Glass forming ability
  • Microstructure
  • Polarization studies