An Intensive Study on Assorted Substrates Suitable for High JFOM AlGaN/GaN HEMT


The performance comparison and the temperature profile of AlGaN/GaN HEMT on different substrates are investigated. It results the maximum drain-source current (IDS) of 1.08 A/mm, 1.04 A/mm, 0.81 A/mm and 0.669 A/mm for AlGaN/GaN HEMT on Diamond, Sapphire, Silicon Carbide and Silicon substrates respectively. In addition, it contributes the breakdown voltage of 62 V, 100.4 V, 174 V and 298 V for Sapphire, Diamond, Silicon and Silicon Carbide based HEMT respectively. It also exhibits the maximum current gain cut off frequency of 17.4 GHz, 25 GHz, 45.91 GHz and 47.07 GHz for the HEMT grown on SiC, Silicon, Sapphire and Diamond substrates respectively. The trade off between the breakdown voltage and the cut-off frequency is observed in all HEMT devices. Hence, the Johnson figure of merit (fT × BVGD) is calculated to inspect the choice of substrate for AlGaN/GaN HEMT device. Furthermore, the simulation result reveals very high Johnson figure of merit for the HEMT grown on Silicon Carbide substrate (5.18 × 1012 V/s), than Sapphire (2.84 × 1012 V/s), Silicon (4.35 × 1012 V/s) and Diamond (4.72 × 1012 V/s) based HEMT devices. Hence, the SiC based HEMT will be a trend for future high power and high frequency applications.

This is a preview of subscription content, log in to check access.


  1. 1.

    Augustine Fletcher AS, Nirmal D (2017) A survey of Gallium Nitride HEMT for RF and high power application. Superlattice Microst 109:519–537

    Article  Google Scholar 

  2. 2.

    Augustine Fletcher AS, Nirmal D, Arivazhagan L, Varghese JAA (2019) Enhancement of Johnson figure of merit in III-V HEMT combined with discrete field plate and AlGaN blocking layer. International Journal RF and Microwave Computer-Aided Engineering 30(2):1–9

  3. 3.

    Vitanov S, Palankovski V, Maroldt S, Quay R (2010) High-temperature modeling of AlGaN/GaN HEMTs. Solid State Electron 54:1105–1112

    CAS  Article  Google Scholar 

  4. 4.

    Tomio S, Ken O, Atsushi N (2018) GaN HEMT for space applications. IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium 2:136–139

  5. 5.

    Kuwabara T, Tawa N, Tone Y, Kaneko T (2017) A 28 GHz 480 elements digital AAS using GaN HEMT amplifiers with 68 dB EIRP for 5G long range base station applications. IEEE Compound Semiconductor Integrated Circuits Symposium 3:1–4

  6. 6.

    Lu J, Hou R, Di Maso, Styles J (2018) A GaN/Si Hybrid T-type three level configuration for electric vehicle traction inverter. IEEE Workshop on Wide Bandgap Power Devices and Applications 12:77-81

  7. 7.

    Taylor A, Lu J, Zhu L, Bai K, McAmmond M, Brown A (2018) Comparison of SiC MOSFET-based and GaN HEMT-based high efficiency high power density 7.2 kW EV battery chargers. IET Power Electron 11:1849–1857

    Article  Google Scholar 

  8. 8.

    Gamand F, Dong M, Li C, Gaquiere (2012) A 10-MHz GaN HEMT DC/DC boost converter for power amplifier applications. IEEE Trans Circuits Syst 11:776–779

    Google Scholar 

  9. 9.

    Batu K, Chalise HB (2018) Performance trade-off in a unified multi-static passive radar and communication system. IEEE Radar Conference 7: 0653–0658

  10. 10.

    Liberati R, Calori M (2018) High performance future hybrid transceiver module using GaN power devices for seeker applications. IEEE Radar Conference 3:1–4

    Google Scholar 

  11. 11.

    Xie C, Pavio A (2007) Development of GaN HEMT based high power high efficiency distributed power amplifier for military aplications. IEEE Military Communication Conference 6:1–4

  12. 12.

    Zhang Y, Feng S, Zhu H, Guo C, Deng B, Zhang G (2014) Effect of self-heating on the drain current transient response in AlGaN/GaN HEMTs. IEEE Electron Device Lett 35(3):345–347

    CAS  Article  Google Scholar 

  13. 13.

    Sahoo A, Subramani N, Nallatamby J, Rolland N, Medjdoub F (2016) Thermal analysis of AlN/GaN/AlGaN HEMTs grown on Si and SiC substrate through TCAD simulations and measurements. European Microwave Integrated Circuits Conference 5: 145–148

  14. 14.

    Podder A, Jannatul I, Hasanuzzaman S, Sherajul I, Bhuiyan A (2017) Substrate effects on channel temperature distribution of AlGaN/GaN HEMT. International Conference on Electrical Information and Communication Technology 3:1–4

  15. 15.

    Han Y, Long L, Zhang X, Leong Y, Choo K (2014) Thermal management of hotspots with a microjet based hybrid heat sink for GaN-on-Si devices. IEEE Trans Compon Packag Manuf Technol 4(9):1441–1450

    CAS  Article  Google Scholar 

  16. 16.

    Buetow S, Herzer (2018) Characterization of GaN-HEMT in cascode topology and comparison with state of the art-power devices. IEEE International Symposium on Power Semiconductor Devices and ICs 2:196–199

  17. 17.

    Gupta M, Vallabhaneni A, Kumar S (2017) Self-consistent electrothermal modeling of passive and microchannel cooling in AlGaN/GaN HEMTs. IEEE Transactions on Components, Packaging and Manufacturing Technology 7(8):1305–1312

  18. 18.

    Tsai T, Hsu H, Chiang C, Tu Y, Chang C, Hsieh T, Wang H, Liu S, Chang E (2014) Performance enhancement of flip chip packaged AlGaN/GaN HEMTs using active-region bumps induced piezoelectric effect. IEEE Electron Device Lett 35(7):735–737

    CAS  Article  Google Scholar 

  19. 19.

    Tadjer M, Anderson T, Hobart K, Feygelson T, Caldwell J, Eddy C, Kub F, Butler J, Pate B, Melngailis J (2012) Reduced self-heating in AlGaN/GaN HEMTs using nanocrystalline diamond heat-spreading films. IEEE Electron Device Lett 33(1):23–25

    CAS  Article  Google Scholar 

  20. 20.

    Amano H, Staines Y, Beam E, Borga M et al (2018) The GaN power electronics roadmap. J Appl Phys 163001:1–48

    Google Scholar 

  21. 21.

    Chao P, Chu K Creamer C (2013) A new high power GaN-on-Diamond HEMT with low-temperature bonded substrate technology. CS MANTECH Conference 5:179–182

  22. 22.

    Rejo M, Chabak K, Poling B, Gilbert R, Crespo A, Gillespie J, Kossler M, Walker D, Via D, Jessen G, Francis D, Faili F, Babic D, Ejeckam F (2010) Comparative study of AlGaN/GaN HEMTs on free-standing diamond and silicon substrates for thermal effects. IEEE Compound Semiconductor Integrated Circuit Symposium 4:1–4

  23. 23.

    Tyhach M, Bernstein S, Saledas P, Ejeckam F, Babic D, Faili F, Francis D (2012) Comparison of GaN on diamond with GaN on SiC HEMT and MMIC performance. CS MANTECH Conference 2:1–4

  24. 24.

    Alomari M, Dussaigne A, Martin D, Grandjean N, Gaquie C, Kohn E (2010) AlGaN/GaN HEMT on (111) single crystalline diamond. Electron Lett 46(4):1–3

    Article  Google Scholar 

  25. 25.

    Liu J, Tian H, Li X, Chen J, Li F, Hei, Li C (2016) Preparation of nano-diamond films on GaN with a Si buffer layer. New Carbon Mater 31(5):518–524

    CAS  Article  Google Scholar 

  26. 26.

    Wong Y, Chiu Y, Luong T, Lin T, Ho Y, Lin Y, Chang E (2012) Growth and fabrication of AlGaN/GaN HEMT on SiC substrate. IEEE International Conference on Semiconductor Electronics 6:729–732

  27. 27.

    Zhai W, Zhang J, Chen X, Bu R, Wang H, Hou X (2017) FEM thermal and stress analysis of bonded GaN-on-diamond substrate. API Advances 7(9):1–8

  28. 28.

    Yang L, Mi M, Hou B, Zhang H, Zhu J, Zhu Q, Lu Y, Zhang M, He Y, Chen L, Zhou X, Lv L, Ma X, Hao Y (2017) Enhanced gm and fT with high Johnson’s figure-of-merit in thin barrier AlGaN/GaN HEMTs by TiN-based source contact ledge. IEEE Electron Device Lett 38(11):1563–1566

    CAS  Article  Google Scholar 

  29. 29.

    Omika K, Tateno Y, Kouchi T, Komatani T, Yaegassi Y, Yui K, Nakata K, Nagamura N, Kotsugi M, Horiba K, Oshima M, Suemitsu M (2018) Operation mechanism of GaN-based transistors elucidated by element specifc X-ray nanospectroscopy. Sci Rep 8:1–9

    CAS  Article  Google Scholar 

  30. 30.

    Gudkov A, Shashurin V, Vyuginov V, Tikhomirov V, Vidyakin S, Agasieva S, Gorlacheva E, Chizhikov S (2016) The influence of AlGaN barrier-layer thickness on the GaN HEMT parameters for space applications. Proceedings of the Scientific-Practical Conference Research and Development 5:273–280

  31. 31.

    Augustine Fletcher AS, Nirmal D, Ajayan J, Arivazhagan L (2019) Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications. Int J Electron Commun 99:325–330

    Article  Google Scholar 

  32. 32.

    Borgaa M, Meneghinia M, Stoffelsb S, Hoveb M, Zhaob M, Lib X, Decoutereb S, Zanonia E, Meneghessoa G (2018) Impact of the substrate and buffer design on the performance of GaN on Si power HEMTs. Microelectron Reliab 8(90):584–588

    Article  Google Scholar 

  33. 33.

    Dumka D, Chou T, Jimenez J, Fanning D, Francis D, Faili F, Ejeckam F, Bernardo M (2013) Electrical and thermal performance of AlGaN/GaN HEMTs on diamond substrate for RF applications. IEEE Compound Semiconductor Integrated Circuit Symposium 2:1–4

  34. 34.

    Kumar N, Julien C, Ahamed H, Nallatamby J, Raphel S (2017) Identification of GaN buffer traps in microwave power AlGaN/GaN HEMTs through low frequency S-Parameters measurements and TCAD-based physical device simulations. J Electron Device Soc 5(3):175–181

    Article  Google Scholar 

  35. 35.

    Wośko M, Paszkiewicz B, Szymański T, Paszkiewicz R (2016) Comparison of electrical, optical and structural properties of epitaxially grown HEMT's type AlGaN/AlN/GaN heterostructures on Al2O3, Si and SiC substrates. Superlattice Microst 100:619–626

    Article  Google Scholar 

  36. 36.

    Zhou Q, Chen W, Liu S, Zhang B, Feng Z, Cai S, Chen J (2013) High breakdown voltage InAlN/AlN/GaN HEMTs achieved by Schottky Source technology International Symposium on Power Semiconductor Devices & IC’s 3:195–198

  37. 37.

    Chigaeva E, Walthes W, Wiegner D, Grozing M, Schaich F, Wieser N, Berroth M, Breitschadel O, Kley L, Kuhn B (2000) Determination of small-signal parameters of GaN based HEMTs in high performance devices. IEEE/Cornell Proceedings and Conference 2:115–122

  38. 38.

    Rohdin H, Nagy A, Robbins V, Su V, Wakita A, Seeger S, Hwang T, Chye P, Gregory P, Bahl S (1997) 0.1 μm gate length AllnAs/GaInAs/GaAs MODFET MMIC process for applications in high speed wireless communications, Hewlett Packard Journal Online 1–26

  39. 39.

    Darwish A, Ibrahim A, Alfred H (2011) Temperature dependence of GaN HEMT small signal parameters. International Journal of Microwave Science and Technology 945189:1–5

  40. 40.

    Tasker P, Hughes B (1989) Importance of source and drain resistance to the maximum fT of millimeter-wave MODFET’s. IEEE Electron Device Lett 10(7):291–293

    Article  Google Scholar 

  41. 41.

    Lashway C, Berzoy A, Elsayad N, Mohammed O (2017) Breakdown voltage assessment of GaN HEMT devices through physics-based modeling. International Applied Computational Electromagnetics Society Symposium 3:1–2

  42. 42.

    Lee Y, Yao Y, Huang C, Lin T, Cheng L, Liu C, Wang M, Hwang M (2014) High breakdown voltage in AlGaN/GaN HEMTs using AlGaN/GaN/AlGaN quantum-well electron-blocking layers. Nano Res Lett 433:1–9

    Google Scholar 

  43. 43.

    Jebalin B, Rekh S, Prajoon P, Mohan Kumar N, Nirmal D (2015) The influence of high-k passivation layer on breakdown voltage of schottky AlGaN/GaN HEMTs. Microelectron J 46(12):1387–1391

    CAS  Article  Google Scholar 

  44. 44.

    Nirmal D, Arivazhagan L, Augustine Fletcher AS, Ajayan J, Prajoon P (2018) Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application. Superlattice Microst 113:110–120

    Article  Google Scholar 

  45. 45.

    Zhang Y, Feng S, Zhu H, Gong X, Shi L, Guo C (2014) Determining drain current characteristics and channel temperature rise in GaN HEMTs. IEEE Trans Device Mater Reliab 14(4):978–982

    CAS  Article  Google Scholar 

  46. 46.

    Pandey D, Bhattacharjee A, Lenka T (2014) Study on temperature dependence scattering mechanisms and mobility effects InGaN and GaAs HEMTs. Physics of Semiconductor Devices Environmental Science and Engineering 15:67–70

  47. 47.

    Alim M, Rezazadeh A, Haris N, Gaquiere C (2016) Anomaly and intrinsic capacitance behaviour over temperature of AlGaN/GaN/SiC and AlGaAs/GaAs HEMTs for microwave application. Proceedings of European Microwave Integrated Circuits Conference 2:149–152

  48. 48.

    Xinga W, Liua Z, Ing G, Ngb PT (2016) Temperature dependent characteristics of InAlN/GaN HEMTs for mm-wave applications. 8th International Conference on Materials for Advanced Technologies. Procedia Eng 141:103–107

    Article  Google Scholar 

Download references


This work was supported by Department of Research and Development Organization, Government of India (Grant No. ERIP/ ER/DGMED&CoS/990616501/M/01/1646).

Author information



Corresponding author

Correspondence to D. Nirmal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fletcher, A.S.A., Nirmal, D., Ajayan, J. et al. An Intensive Study on Assorted Substrates Suitable for High JFOM AlGaN/GaN HEMT. Silicon (2020).

Download citation


  • HEMT
  • FOM
  • Silicon
  • Sapphire
  • Diamond
  • SiC
  • Substrates