Influence of Ball Burnishing Process on Equal Channel Angular Pressed Mg-Zn-Si Alloy on the Evolution of Microstructure and Corrosion Properties

Abstract

In the present study, Mg-4Zn-1Si alloy was subjected to equal channel angular pressing (ECAP) up to 4 passes at 300 °C, followed by ball burnishing using 0.3 mm depth of press, 300 mm/min feed and 1 pass successfully. The effect of ECAP and ECAP + ball burnishing process on microstructure, mechanical properties (tensile and hardness) and corrosion behavior was systematically investigated. After 4 pass ECAP, initial coarse grains (210 μm) were refined and average grain size is 6 μm and after ball burnishing, the grain size is found to be 3.3 μm. Microstructure evolution is discussed using optical images, scanning electron microscope images and transmission electron microscope images. For ECAP samples, maximum strength and hardness was recorded at 3 pass. Both strength and hardness decreased for 4 pass ECAP processed samples, even though grain size decreased, this is because of texture modification in the material. ECAP 4 pass + ball burnished samples exhibited 48.5% enhancement of microhardness as compared to 4 pass ECAP samples. Corrosion resistance of the samples decreased with increase in the number of ECAP passes, this is due to strain-induced grain refinement with more crystalline defects in samples. Combined process of ECAP and ball burnishing effectively reduces the Icorr and this consequently reduces corrosion rate of the Mg–4Zn-1Si alloy.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H (2005). Biomaterials 26:3557–3563

    CAS  Article  Google Scholar 

  2. 2.

    Staiger MP, Pietak AM, Huadmai J, Dias G (2006). Biomaterials 27:1728

    CAS  Article  Google Scholar 

  3. 3.

    El-Rahman SSA (2003) Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacol Res 47:189–194

    CAS  Article  Google Scholar 

  4. 4.

    Hirano S, Suzuki KT (1996). Environ Health Perspect 104:85

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Gao X, Nie JF (2007). Scr Mater 56:645

    CAS  Article  Google Scholar 

  6. 6.

    Li Z, Gu X, Lou S, Zheng Y (2008). Biomaterials 29:1329–1344

    CAS  Article  Google Scholar 

  7. 7.

    Zhang E, Yang L, Xu J, Chen H (2010). Acta Biomater 6:1756–1762

    CAS  Article  Google Scholar 

  8. 8.

    Song G (2007). Corros Sci 49:1696

    CAS  Article  Google Scholar 

  9. 9.

    Boehlert C J and Knittel K, Mater Sci Eng A 417 (2006) 315

  10. 10.

    Wang J, Tang J, Zhang P, Li Y, Wang J, Lai Y, Qin L (2012). J Biomed Mater Res Part B 100:1691

    Article  Google Scholar 

  11. 11.

    McCarty MF (1997). Med Hypotheses 49:175

    CAS  Article  Google Scholar 

  12. 12.

    Sripanyakorn S, Jugdaohsingh R, Elliott H, Walker C, Mehta P, Shoukru S, Thompson RP, Powell JJ (2004). Br J Nutr 91:403–409

    CAS  Article  Google Scholar 

  13. 13.

    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189

    CAS  Article  Google Scholar 

  14. 14.

    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zechetbauer MJ, Zhu YT (2006). Jom 58:33

    Article  Google Scholar 

  15. 15.

    Gopi KR, Nayaka HS, Sahu S (2016) Investigation of microstructure and mechanical properties of ECAP-processed AM series magnesium alloy. J Mater Eng Perform 25:3737–3745

    CAS  Article  Google Scholar 

  16. 16.

    Tong LB, Zheng MY, Hu XS, Wu K, Xu SW, Kamado S, Kojima Y (2010). Mater Sci Eng A 527:4250

    Article  Google Scholar 

  17. 17.

    Koike J, Kobayashi T, Mukai T, Watanabe H, Suzuki M, Maruyama K, Higashi K (2003). Acta Mater 51:2055–2065

    CAS  Article  Google Scholar 

  18. 18.

    Trojanova Z, Lukac P, Szaraz Z (2005). Rev Adv Mater Sci 10:437

    CAS  Google Scholar 

  19. 19.

    Barnett MR, Nave MD, Bettles C (2004). J Mater Sci Eng A 386:205

    Article  Google Scholar 

  20. 20.

    Sandlobes S, Zaefferer S, Schestakow I, Yi S, Gonzalez-Martinez R (2011). Acta Mater 59:429

    Article  Google Scholar 

  21. 21.

    Outeiro JC, Rossi F, Fromentin G, Poulachon G, Germain G, Batista AC (2013). Procedia CIRP 8(2013):487–492

    Article  Google Scholar 

  22. 22.

    Salahshoor M, Guo YB (2014) Biodegradation control of magnesium-calcium biomaterial via adjusting surface integrity by synergistic cutting-burnishing. Procedia CIRP 13:143–149

    Article  Google Scholar 

  23. 23.

    Denkena B, Lucas A (2007). CIRP Ann Manuf Techno 56:113

    Article  Google Scholar 

  24. 24.

    Ralston KD, Birbilis N (2010). Corrosion 66:75005

    Article  Google Scholar 

  25. 25.

    Ramesh S, Kudva SA, Anne G, Manne B, Arya S (2019). Mater Res Express 6:1065e8

    Article  Google Scholar 

  26. 26.

    Naik GM, Narendranath S, Kumar SS (2019). J Mater Eng Perform 28(5):2610–2619

    CAS  Article  Google Scholar 

  27. 27.

    Anne G, Ramesh MR, Nayaka HS, Arya SB, Sahu S (2017). J Mater Eng Perform 26:1726

    CAS  Article  Google Scholar 

  28. 28.

    Henthorne M (2016). Corrosion 72:1488

    Article  Google Scholar 

  29. 29.

    Segal VM (1995). Mater Sci Eng A 197:157

    Article  Google Scholar 

  30. 30.

    Azushima A, Kopp R, Korhonen A, Yang DY, Micari F, Lahoti GD, Groche P, Yanagimoto J, Tsuji N, Rosochowski A, Yanagida A (2008). CIRP Ann Manuf Techno 57:716–735

    Article  Google Scholar 

  31. 31.

    Valiev RV, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    CAS  Article  Google Scholar 

  32. 32.

    Ramesh S, Anne G, Nayaka HS, Sahu S, Ramesh MR (2019). J Mater Eng Perform 28:2053–2062

    CAS  Article  Google Scholar 

  33. 33.

    Hall EO (1951). Proc Phy Scoc, (London) 64 B:747–753

    Article  Google Scholar 

  34. 34.

    Ma A, Saito N, Takagi M, Nishida Y, Iwata H, Suzuki K, Shigematsu I, Watazu A (2005). Mater Sci Eng A 395:70–76

    Article  Google Scholar 

  35. 35.

    Song D, Ma A, Jiang J, Lin P, Yang D, Fan J (2010). Corros Sci 52:481–490

    CAS  Article  Google Scholar 

  36. 36.

    Aust KT, Erb U, Palumbo G (1994). Mater Sci Eng A 176:329

    CAS  Article  Google Scholar 

  37. 37.

    Uddin MS, Rosman H, Hall C, Murphy P, Int J (2017). Adv Manuf Syst 90:2095

    Article  Google Scholar 

  38. 38.

    Sun Y, Zhang B, Wang Y, Geng L, Jiao X (2012). Mater Des 34:58

    Article  Google Scholar 

  39. 39.

    Li H, Pang S, Liu Y, Sun L, Liaw PK, Zhang T (2015). Mater Des 67:9–19

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramesh, S., Anne, G., Kumar, G. et al. Influence of Ball Burnishing Process on Equal Channel Angular Pressed Mg-Zn-Si Alloy on the Evolution of Microstructure and Corrosion Properties. Silicon (2020). https://doi.org/10.1007/s12633-020-00541-y

Download citation

Keywords

  • ECAP process
  • Grain refinement
  • Ball burnishing
  • Corrosion behavior