Multi-Response Optimization of ECDM Parameters for Silica (Quartz) Using Grey Relational Analysis


Electrochemical discharge machining (ECDM) has successfully demonstrated the micro-machining of pioneering engineering materials, regardless of their properties such as glass, quartz, silicon nitride ceramics, composites, etc. Yet numerous intrinsic challenges are there that should be addressed during the micro-hole drilling process with ECDM such as low material removal rate (MRR), high area of the heat-affected zone (HAZ), high hole tapering (HT), high radial overcut (ROC) and circularity error (CE). However, the determination of the input parameters’ optimum level for multi-response parameters is still a strenuous work. This present study investigates the machining performance of the ECDM process during the machining of silica (Quartz) through establishing the optimum combination of the level of the parameters for multi-response parameters. MRR, HAZ, HT, ROC, and CE were picked as response parameters. Experiments were performed in consonance with Taguchi’s L9 orthogonal array and response measurements were analyzed through Grey Relational Analysis (GRA) to identify the optimum levels of input process parameters for their combined fusion i.e. maximum MRR, minimum HAZ, minimum HT, minimum ROC, and minimum CE. Results exhibited that electrolyte concentration (wt.%) is the utmost governing input parameter followed by applied voltage (V) and inter-electrode gap ((IEG), mm) for controlling the multi-response parameters simultaneously. GRA optimized parameters were determined as 35 V, 15 wt.%, and 25 mm with 68.34% contribution only from the electrolyte concentration. Based on experimental investigation, micro-holes were successfully drilled on Silica (quartz) material with the success of the utilized method to assess the machining performance of the electrochemical discharge machining process.

This is a preview of subscription content, log in to check access.


  1. 1.

    Sandison ME, Zagnoni M, Abu-hantash M, Morgan H (2007) Micromachined glass apertures for artificial lipid bilayer formation in a microfluidic system. J Micromech Microeng 17:S189–S196.

    CAS  Article  Google Scholar 

  2. 2.

    San H, Zhang H, Zhang Q, YuY CX (2013) Silicon – glass-based single piezoresistive pressure sensors for harsh environment. J Micromech Microeng 23:075020.

    CAS  Article  Google Scholar 

  3. 3.

    Isabella O, Moll F, Krč J, Zeman M (2010) Modulated surface textures using zinc-oxide films for solar cells applications. Phys Status Solidi Appl Mater Sci 207:642–646.

    CAS  Article  Google Scholar 

  4. 4.

    Bruckenstein S, Shay M (1985) Experimental aspects of use of the quartz crystal microbalance in solution. Electrochim Acta 30:1295–1300

    CAS  Article  Google Scholar 

  5. 5.

    Rattan N, Mulik RS (2018) Experimental set up to improve machining performance of silicon dioxide (quartz) in magnetic field assisted TW-ECSM process. Silicon 10(6):2783–2791.

    CAS  Article  Google Scholar 

  6. 6.

    Feng H, Xiang D, Wu B, Zhao B (2019) Ultrasonic vibration-assisted grinding of blind holes and internal threads in cemented carbides. Int J Adv Manuf Technol 104(1–4):1357–1367.

    Article  Google Scholar 

  7. 7.

    Belyaev A, Polupan O, Dallas W, Ostapenko S, Hess D, Wohlgemuth J (2006) Crack detection and analyses using resonance ultrasonic vibrations in full-size crystalline silicon wafers. Appl Phys Lett 88(11):111907

    Article  Google Scholar 

  8. 8.

    Tang Y, Fuh JYH, Loh HT, Wong YS, Lim YK (2008) Laser dicing of silicon wafer. Surf Rev Lett 15(01n02):153–159

    CAS  Article  Google Scholar 

  9. 9.

    Wuthrich R, Fascio V (2005) Machining of non-conducting materials using electrochemical discharge phenomenon-an overview. Int J Mach Tools Manuf 45:1095–1108

    Article  Google Scholar 

  10. 10.

    Basak I, Ghosh A (1997) A Mechanism of material removal in electrochemical discharge machining a theoretical model and experimental verification. J Mater Process Technol 71:350–359.

    Article  Google Scholar 

  11. 11.

    Basak I, Ghosh A (2003) A Mechanism of spark generation during electrochemical discharge machining a theoretical model and experimental verification. J Mater Process Technol 62:46–53.

    Article  Google Scholar 

  12. 12.

    Kulkarni A, Sharan R, Lal GK (2002) An experimental study of discharge mechanism in electrochemical discharge machining. Int J Mach Tools Manuf 42:1121–1127.

    Article  Google Scholar 

  13. 13.

    Sarkar BR, Doloi B, Bhattacharyya B (2006) Parametric analysis on electrochemical discharge machining of silicon nitride ceramics. Int J Adv Manuf Technol 28(9–10):873–881.

    Article  Google Scholar 

  14. 14.

    Wüthrich R, Hof LA, Lal A, Fujisaki K, Bleuler H, Mandin P, Picard G (2005) Physical principles and miniaturization of spark assisted chemical engraving (SACE). J Micromech Microeng 15(10):S268–S275

    Article  Google Scholar 

  15. 15.

    Wuthrich R, Hof LA (2005) The gas film in spark assisted chemical engraving SACE—a key element for micro-machining applications. Int J Mach Tools Manuf 46:828–835.

    Article  Google Scholar 

  16. 16.

    Fascio V, Wuthrich R, Bleuler H (2004) Spark assisted chemical engraving in the light of electrochemistry. Electrochim Acta 49:3997–4003.

    CAS  Article  Google Scholar 

  17. 17.

    Bindu MJ, Hiremath SS (2019) Machining and characterization of channels and textures on quartz glass using μ-ECDM process. Silicon, pp 1-13.

  18. 18.

    Oza AD, Kumar A, Badheka V et al (2019) Traveling wire electrochemical discharge machining (TW-ECDM) of quartz using zinc coated Brass wire: investigations on material removal rate and kerf width characteristics. Silicon, pp 1-12.

  19. 19.

    Singh M, Singh S, Kumar S (2019) Experimental investigation for generation of micro-holes on silicon wafer using electrochemical discharge machining process. Silicon, pp 1-7.

  20. 20.

    Antil P (2019) Experimental analysis on wear behavior of PMCs reinforced with electroless coated silicon carbide particulates. Silicon 11(4):1791–1800.

    CAS  Article  Google Scholar 

  21. 21.

    Zhang Y, Xu Z, Zhu Y, Zhu D (2016) Machining of a film-cooling hole in a single-crystal super alloy by high-speed electrochemical discharge drilling. Chin J Aeronaut 29(2):560–570

    Article  Google Scholar 

  22. 22.

    Liu JW, Yue TM, Guo ZN (2010) An analysis of the discharge mechanism in electrochemical discharge machining of particulate reinforced metal matrix composites. Int J Mach Tools Manuf 50(1):86–96.

    Article  Google Scholar 

  23. 23.

    Jain VK, Tandon S, Kumar PK (1990) Experimental investigations into electrochemical spark machining of composites. J Eng Ind 112(2):194–197.

    Article  Google Scholar 

  24. 24.

    McGeough JA, Khairy ABM, Munro W (1983) Theoretical and experimental investigation of the relative effects of spark erosion and electrochemical dissolution in electrochemical arc machining. Ann CIRP 32:1113–1116.

    Article  Google Scholar 

  25. 25.

    Kurafuji H, Suda K (1968) Electrical discharge drilling of glass. Ann CIRP 16:415–419

    Google Scholar 

  26. 26.

    Sundaram M, Chen YJ, Rajurkar K (2019) Pulse electrochemical discharge machining of glass-fiber epoxy reinforced composite. CIRP Ann 68(1):169–172.

    Article  Google Scholar 

  27. 27.

    Tang W, Kang X, Zhao W (2019) Experimental investigation of gas evolution in electrochemical discharge machining process. Int J Electrochem Sci 14:970–984

    CAS  Article  Google Scholar 

  28. 28.

    Bhuyan BK, Yadava V (2014) Modelling and optimization of travelling wire electro-chemical spark machining process. Int J Indus Sys Eng 18(2):139–158.

    Article  Google Scholar 

  29. 29.

    Malik A, Manna A (2016) An experimental investigation on developed WECSM during micro slicing of e-glass fibre epoxy composite. Int J Adv Manuf Technol 85:2097–2106.

    Article  Google Scholar 

  30. 30.

    Bhattacharyya B, Doloi BN, Sorkhel SK (1999) Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. J Mater Process Technol 95:145–154.

    Article  Google Scholar 

  31. 31.

    Crichton IM, McGeough JA (1985) Studies of the discharge mechanisms in electrochemical arc machining. J Appl Electrochem 15:113–119.

    CAS  Article  Google Scholar 

  32. 32.

    Chen JC, Lin YA, Kuo CL, Ho CC, Yau WH (2019) An improvement in the quality of holes drilled in quartz Glassby electrochemical discharge machining. Smart Sci 7(3):169–174.

    CAS  Article  Google Scholar 

  33. 33.

    Saranya S, Sankar AR (2018) Fabrication of precise micro-holes on quartz substrates with improved aspect ratio using a constant velocity-feed drilling technique of an ECDM process. J Micromech Microeng 28(12):125009.

    CAS  Article  Google Scholar 

  34. 34.

    Tang W, Kang X, Zhao W (2017) Enhancement of electrochemical discharge machining accuracy and surface integrity using side-insulated tool electrode with diamond coating. J Micromech Microeng 27(6):065013.

    CAS  Article  Google Scholar 

  35. 35.

    Saranya S, Ravi Sankar A (2017) Fabrication of precise microchannels using a side-insulated tool in a spark assisted chemical engraving process. Mater Manuf Process 33:1422–1428.

    CAS  Article  Google Scholar 

  36. 36.

    Han MS, Min BK, Lee SJ (2008) Modeling gas film formation in electrochemical discharge machining processes using a side-insulated electrode. J Micromech Microeng 18(4):045019

    Article  Google Scholar 

  37. 37.

    Goud MM, Sharma AK (2017) On performance studies during micromachining of quartz glass using electrochemical discharge machining. J Mech Sci Technol 31:1365–1372.

    Article  Google Scholar 

  38. 38.

    Jain VK, Adhikary S (2008) On the mechanism of material removal in electrochemical spark machining of quartz under different polarity conditions. J Mater Process Technol 200:460–470.

    CAS  Article  Google Scholar 

  39. 39.

    Elhami S, Razfar MR (2017) Effect of ultrasonic vibration on the single discharge of electrochemical discharge machining. Mater Manuf Process 33(4):1–8.

    Article  Google Scholar 

  40. 40.

    Daneshmand S, Monfared V, Lotfi Neyestanak AA (2017) Effect of tool rotational and Al2O3 powder in electro discharge machining characteristics of NiTi-60 shape memory alloy. Silicon 9(2):273–283.

    CAS  Article  Google Scholar 

  41. 41.

    Liu JW, Yue TM, Guo ZN (2013) Grinding-aided electrochemical discharge machining of particulate reinforced metal matrix composites. Int J Adv Manuf Technol 68(9–12):2349–2357.

    Article  Google Scholar 

  42. 42.

    Liu J, Lin Z, Yue T, Guo Z, Jiang S (2018) An analysis of the tool electrode working mechanism of grinding-aided electrochemical discharge machining of MMCs. Int J Adv Manuf Technol 99(5–8):1369–1378.

    Article  Google Scholar 

  43. 43.

    Kuo KY, Wu KL, Yang CK, Yan BH (2015) Effect of adding SiC powder on surface quality of quartz glass microslit machined by WECDM. Int J Adv Manuf Technol 78:73–83

    Article  Google Scholar 

  44. 44.

    Yadav P, Yadava V, Narayan A (2019) Experimental investigation for performance study of wire electrochemical spark cutting of silica epoxy Nanocomposites. Silicon, pp 1-11.

  45. 45.

    Rattan N, Mulik RS (2017) Experimental investigations and multi-response optimization of silicon dioxide (quartz) machining in magnetic field assisted TW-ECSM process. Silicon 9(5):663–673.

    CAS  Article  Google Scholar 

  46. 46.

    Liu Y, Zhang C, Li S, Guo C, Wei Z (2019) Experimental study of micro electrochemical discharge machining of ultra-clear glass with a rotating helical tool. Processes 7:19.5

    Article  Google Scholar 

  47. 47.

    Rajput V, Goud M, Suri NM (2019) Study on effective process parameters: towards the better comprehension of ECDM process. Int J Mod Manufact Technol 11(2):105–118

    Google Scholar 

  48. 48.

    Kavimani V, Prakash KS, Thankachan T, et al. (2019) WEDM parameter optimization for Silicon@r-GO/Magneisum composite using Taguchi based GRA coupled PCA. Silicon, pp 1–15.

  49. 49.

    Muthuramalingam T, Vasanth S, Vinothkumar P, Geethapriyan T, Rabik MM (2019) Multi criteria decision making of abrasive flow oriented process parameters in abrasive water jet machining using Taguchi–DEAR methodology. Silicon 10(5):2015–2021.

    CAS  Article  Google Scholar 

  50. 50.

    Antil P, Singh S, Singh P (2018) Taguchi’s methodology based parametric analysis of material removal rate during ECDM of PMCs. Procedia Manuf 26:469–473

    Article  Google Scholar 

  51. 51.

    Julong D (1989) Introduction to Grey system theory. J Grey Syst 1:1–24

    Google Scholar 

  52. 52.

    Antil P (2019) Modelling and multi-objective optimization during ECDM of silicon carbide reinforced epoxy composites. Silicon, pp 1–14.

  53. 53.

    Kumar JS, Kalaichevlan K (2018) Taguchi-Grey multi-response optimization on structural parameters of honeycomb Core Sandwich structure for low velocity impact test. Silicon 10(3):879–889

    Article  Google Scholar 

  54. 54.

    Kumar PN, Rajadurai A, Muthuramalingam T (2018) Multi-response optimization on mechanical properties of silica Fly ash filled polyester composites using Taguchi-Grey relational analysis. Silicon 10(4):1723–1729

    CAS  Article  Google Scholar 

  55. 55.

    Ziki AJD, Didar TF, Wuthrich R (2012) Micro-texturing channel surfaces on glass with spark assisted chemical engraving. Int J Mach Tools Manuf 57:66–72.

    Article  Google Scholar 

  56. 56.

    Goud MM, Sharma AK, Jawalkar CS (2016) A review on material removal mechanism in electrochemical discharge machining ECDM and possibilities to enhance the material removal rate. Precis Eng 45:1–17.

    Article  Google Scholar 

  57. 57.

    Rajput V, Goud M, Suri N M (2019) Performance analysis on the effect of different electrolytes during glass micro drilling operation using ECDM. I-Manag J Futur Eng Technol 14(4): 5–13.

  58. 58.

    Sarikaya M, Gullu A (2014) Multi-response optimization of MQL parameters using Taguchi based GRA in turning of difficult to cut alloy Haynes 25. J Clean Prod 1-11.

  59. 59.

    Mian S H, Umer U, Alkhalefah H (2019) Optimization of scanning parameters in coordinate metrology using grey relational analysis and fuzzy logic. Math Probl Eng.

  60. 60.

    Maillard P, Despont B, Bleuler H, Wuthrich R (2007) Geometrical characterization of micro-holes drilled in glass by gravity-feed with spark assisted chemical engraving (SACE). J Micromech Microeng 17(7):1343–1349

    Article  Google Scholar 

  61. 61.

    Abdullah AB, Sapuan SM, Samad Z (2015) Roundness error evaluation of cold based on profile measurement technique. Int J Adv Manuf Technol 80:293–300.

    Article  Google Scholar 

  62. 62.

    Tang L, Yang S (2013) Experimental investigation on the electrochemical machining of 00Cr12Ni9Mo4Cu2 material and multi-objective parameters optimization. Int J Adv Manuf Technol 67:2909–2916

    Article  Google Scholar 

  63. 63.

    Sindhu D, Thakur L, Chandna P (2019) Multi-objective optimization of rotary ultrasonic machining parameters for quartz glass using Taguchi-Grey relational analysis (GRA). Silicon 11(4):2033–2044.

    CAS  Article  Google Scholar 

  64. 64.

    Antil P, Singh S, Manna A (2018) Electrochemical discharge drilling of SiC reinforced polymer matrix composite using Taguchi’s Grey relational analysis. Arab J Sci Eng 43:1257–1266.

    CAS  Article  Google Scholar 

  65. 65.

    Jain VK, Chak SK (2000) Electrochemical spark trepanning of alumina and quartz. Mach Sci Technol 4(2):277–290.

    CAS  Article  Google Scholar 

  66. 66.

    Jain VK, Priyadarshni D (2013) Fabrication of micro-channels in ceramics (quartz) using electrochemical spark micro machining (ECSM). Proc of global engineering, Science and Technology conference, Singapore

  67. 67.

    Mallick B, Sabah Hameed A, Sarkar BR, Doloi B, Bhattacharyya B (2020) Experimental investigation for improvement of micro-machining performances of μ-ECDM process. Materials Today: Proceedings

  68. 68.

    Wang J, Jia Z, Guo YB (2018) Shape-cutting of quartz glass by spark discharge-assisted diamond wire sawing. J Manuf Process 34:131–139.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Viveksheel Rajput.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajput, V., Pundir, S.S., Goud, M. et al. Multi-Response Optimization of ECDM Parameters for Silica (Quartz) Using Grey Relational Analysis. Silicon (2020).

Download citation


  • Material removal rate
  • Micro-holes
  • Electrochemical discharge machining
  • Overcut
  • Tapering
  • Grey relational analysis