Gaussian Doped Planar 4H-SiC Junctionless Field Effect Transistor For Enhanced Gate Controllability


The incorporation of gaussian/multiple peak gaussian doping in planar 4H-SiC junctionless field effect transistor (JLFET) allows the conceptualization and realization of higher gate controllablity. With the aim of formulating and investigating the underlying device current gating mechanism of gaussian/multiple peak gaussian doping 4H-SiC JLFET with enhanced device performance, we have adopted the exhaustive calibrated 2D TCAD study approach. Our study suggests that by deploying either gaussian or multiple peak gaussian doping improves the ION/IOFF ratio magnificently as compared to the uniformly doped planar 4H-SiC JLFET. Moreover, multiple peak gaussian doping even without the use of P+ pockets improves the switching behaviour as the sub-threshold slope (SS) value reduces. Interestingly, it is observed that just by incorporating the gaussian doping approach the mandate of incorporating P+ pockets to get better volume depletion can be relaxed. Thus the additional fabrication steps to realize the P+ pockets in junctionless structure can be avoided. This results in the lowering of device thermal budget and random dopant fluctuations (RDFs) immune structure. Further, as the reported device demonstrates volume/bulk conduction, it is also expected to be immune towards the interface trapped charges, hence this device realization no more needs additional fabrication steps such as counter doping and annealing to neutralize the semiconductor-oxide traps. Further, device sensitivity analysis in terms of channel length, P+ pockets length, fixed trapped charges at the 4H-SiC-SiO2 interface and temperature variation has also been carried out here.

This is a preview of subscription content, log in to check access.


  1. 1.

    Toumey C (2016) Less is moore. Nature nanotechnology 11(1):2

    CAS  Article  Google Scholar 

  2. 2.

    Colinge JP, Lee CW, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O’neill B, Blake A, White M, Kelleher AM (2010) Nanowire transistors without junctions. Nature nanotechnology 5(3):225

    CAS  Article  Google Scholar 

  3. 3.

    Lee C-W, Afzalian A, Akhavan ND, Yan R, Ferain I, Colinge J-P (2009) Junctionless multigate field-effect transistor, vol 94

  4. 4.

    Lee CW, Borne A, Ferain I, Afzalian A, Yan R, Akhavan ND, Razavi P, Colinge JP (2010) High-temperature performance of silicon junctionless MOSFETs. IEEE T Electron Dev 57(3):620–625

    CAS  Article  Google Scholar 

  5. 5.

    Cheng YC, Wu YC, Chen HB, Han MH, Lu NH, Su JJ, Chang CY (2013) High voltage characteristics of junctionless poly-silicon thin film transistors, vol 103

  6. 6.

    Gundapaneni S, Bajaj M, Pandey RK, Murali KVR, Ganguly S, Kottantharayil A (2012) Effect of band-to-band tunneling on junctionless transistors. IEEE T Electron Dev 59(4):1023–1029

    CAS  Article  Google Scholar 

  7. 7.

    Kumar MJ, Sahay S (2016) Controlling BTBT-induced parasitic BJT action in junctionless FETs using a hybrid channel. IEEE T Electron Dev 63(8):3350–3353

    CAS  Article  Google Scholar 

  8. 8.

    Sahay S, Kumar MJ (2016) Insight into lateral band-to-band-tunneling in nanowire junctionless FETs. IEEE T Electron Dev 63(10):4138–4142

    CAS  Article  Google Scholar 

  9. 9.

    Sahay S, Kumar MJ (2017) Diameter dependence of leakage current in nanowire junctionless field effect transistors. IEEE T Electron Dev 64(3):1330–1335

    Article  Google Scholar 

  10. 10.

    Mudholkar M, Mantooth HA (2013) Characterization and modeling of 4H-SiC lateral MOSFETs for integrated circuit design. IEEE T Electron Dev 60(6):1923–1930

    CAS  Article  Google Scholar 

  11. 11.

    Kumari V, Saxena M, Gupta M (2016) Modeling and simulation of nanoscale lateral gaussian doped channel asymmetric double gate MOSFET. Journal of Nano research 36:51–63

    Article  Google Scholar 

  12. 12.

    Singh N, Agarwal A, Bera LK, Liow TY, Yang R, Rustagi SC, Tung CH, Kumar R, Lo GQ, Balasubramanian N, Kwong DL (2006) High-performance fully depleted silicon nanowire diameter/spl les/5 nm gate-all-around CMOS devices. IEEE Electron Device Lett 27(5):383–386

    CAS  Article  Google Scholar 

  13. 13.

    McPherson B, Hornberger J, Bourne J, Lostetter A, Schupbach R, Shaw R, Reese B, Okumura K, Otsuka T (2009)

  14. 14.

    Valle-Mayorga J, Gutshall CP, Phan KM, Escorcia-Carranza I, Mantooth HA, Reese B, Schupbach M, Lostetter A (2012) High-temperature silicon-on-insulator gate driver for sic-FET power modules. IEEE Trans Power Electron 27(11):4417–4424

    Article  Google Scholar 

  15. 15.

    Seong HK, Lee SY, Choi HJ, Kim TH, Cho NK, Nahm KS, Lee SK (2006) Fabrication and electrical transport properties of CVD grown silicon carbide nanowires SiC NWs for field effect transistor. Trans Tech Publications Materials science forum 527:771–774

    Article  Google Scholar 

  16. 16.

    Basile AF, Dhar S, Mooney PM (2011) Electron trapping in 4H-SiC MOS capacitors fabricated by pre-oxidation nitrogen implantation. Journal of Applied Physics 109(11):114505

    Article  Google Scholar 

  17. 17.

    Zhu S, Jia H, Wang X, Liang Y, Tong Y, Li T, Yang Y (2019) Improved MRD 4H-SiC MESFET with High Power Added Efficiency. Micromachines 10(7):479

    Article  Google Scholar 

  18. 18.

    Takeda H, Hosoi T, Shimura T, Watanabe H (2019) Evaluation of the Impact of Al Atoms on SiO2/SiC Interface Property by Using 4H-SiC n+-channel Junctionless MOSFET. Trans Tech Publications Ltd Materials Science Forum 963:171–174

    Article  Google Scholar 

  19. 19.

    Strenger C, Uhnevionak V, Burenkov A, Bauer A, Pichler P, Erlbacher T, Ryssel H, Frey L (2013) Influence of ion implantation in SiC on the channel mobility in lateral n-channel MOSFETs. ECS Trans 58 (4):71–80

    Article  Google Scholar 

  20. 20.

    Vudumula P, Kotamraju S (2019) Effect of Temperature on the Electrical Characteristics of 4H-SiC Planar n/p-Type Junctionless FET:, Physics Based Simulation. Trans Tech Publications Ltd Materials Science Forum 963:679–682

    Article  Google Scholar 

  21. 21.

    Potbhare S, Goldsman N, Pennington G, Lelis A, McGarrity JM (2006) Numerical and experimental characterization of 4 H-silicon carbide lateral metal-oxide-semiconductor field-effect transistor. Journal of Applied Physics 100(4):044515

    Article  Google Scholar 

  22. 22.

    Singh J, Kumar MJ (2017) A planar junctionless FET using SiC with reduced impact of interface traps: Proposal and analysis. IEEE T Electron Dev 64(11):4430–4434

    CAS  Article  Google Scholar 

  23. 23.

    Singh J, Jain AK, Kumar MJ (2019) Realizing a planar 4H-SiC Junctionless FET for sub 10-nm regime using p+, pocket. IEEE T Electron Dev 7:66

    Google Scholar 

  24. 24.

    Tiwari PK, Jit S (2010) A subthreshold swing model for symmetric double-gate (DG) MOSFETs with vertical Gaussian doping. J Semicond Tech Sci 10(2):107–117

    Article  Google Scholar 

  25. 25.

    Dubey S, Tiwari PK, Jit S (2013) On-current modeling of short-channel double-gate (DG) MOSFETs with a vertical Gaussian-like doping profile. Journal of Semiconductors 34(5): 054001

    Article  Google Scholar 

  26. 26.

    Zhang G, Shao Z, Zhou K (2008) Threshold voltage model of short-channel FD-SOI MOSFETs with vertical Gaussian profile. IEEE T Electron Dev 55(3):803–809

    CAS  Article  Google Scholar 

  27. 27.

    Manual AUS (2010) Silvaco. Santa clara CA

  28. 28.

    Arvanitopoulos AE, Antoniou M, Perkins S, Jennings M, Guadas MB, Gyftakis KN, Lophitis N (2019) On the suitability of 3C-Silicon Carbide as an alternative to 4H-Silicon Carbide for power diodes. IEEE Trans Ind Appl 55(4):4080–4090

    CAS  Article  Google Scholar 

Download references


Authors are thankful to National Institute of Technology, Raipur, Chhattisgarh, India, for providing us the computational facilities.

Author information



Corresponding author

Correspondence to Sangeeta Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agarwal, S., Singh, S., Sahana, B.C. et al. Gaussian Doped Planar 4H-SiC Junctionless Field Effect Transistor For Enhanced Gate Controllability. Silicon (2020).

Download citation


  • 4H-SiC (silicon carbide)
  • Junctionless field effect transistor (JLFET)
  • Gaussian doping
  • Random dopant fluctuations (RDFs)