Facile synthesis of 2-(2-chloroquinolin-3-Yl)-2-((trimethylsilyl)oxy) acetonitriles utilizing TMSCN-ZnI2/DCM

Abstract

A facile synthesis of silicon-containing trimethylsilylated quinolines, 20 from 2-chloro-quinoline-3-carboxaldehyde, 19 are accounted for utilizing trimethylsilyl cyanide (TMSCN) as a reagent, zinc iodide (ZnI2) as a catalyst in dichloromethane (DCM) at room temperature with excellent yields. Further, silylated quinolines, 20 were converted into quinolinyl acetonitriles, 21 in the presence of dilute hydrochloric acid at room temperature in significant yields. Trimethylsilyl cyanide (TMSCN) reacts with aldehyde functional group to form protected silicon ethers as shown in 1HNMR, 13CNMR, and Mass spectral analysis.

Facile synthesis of 2-(2-chloroquinolin-3-yl)-2-((trimethylsilyl)oxy) acetonitriles utilizing TMSCN-ZnI2/DCM

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Holmes RR (1996) Comparison of phosphorus and silicon: Hypervalency, stereochemistry, and reactivity. Chem Rev 96(3):927–950. https://doi.org/10.1021/cr950243n

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    E. Lukevics and O. Pudova, Khim. Geterotsikl. Soedin., 1605 (1996). [Chem. Heterocycl. Comp., 32, 1381 (1996)]

  3. 3.

    Negrebetsky VV, Taylor PG, Kramarova EP, Shipov AG, Pogozhikh SA, Ovchinnikov YE, Baukov YI (2008) Synthesis, structure and dynamic stereochemistry of (O→Si)-chelate N-(trifluorosilylmethyl)-[N-(S)-(1-phenylethyl)]acetamide and 1-(trifluorosilylmethyl)-2-oxoperhydroazepine: retention of the O→Si coordination in the adduct with KF and 18-crown-6. J Organomet Chem 693(7):1309–1320. https://doi.org/10.1016/j.jorganchem.2008.01.033

    CAS  Article  Google Scholar 

  4. 4.

    Spiniello M, White JM (2008) Structural investigations into the β-effect of Pentavalent silicon. Organometallics 27(5):994–999. https://doi.org/10.1021/om701017q

    CAS  Article  Google Scholar 

  5. 5.

    Gonzalez-Garcia G, Gutierrez JA, Cota S, Metz S, Bertermann R, Burschka C, Tacke R (2008) Synthesis and structural characterization of novel neutral higher-coordinate silicon(IV) complexes withSiON3C andSiON4C skeletons. Z Anorg Allg Chem 634(8):1281–1286

    CAS  Article  Google Scholar 

  6. 6.

    Lippe K, Gerlach D, Kroke E, Wagler J (2008) N-(o-Aminophenyl)-2-oxy-4-methoxybenzophenoneimine – Si-chelation by a tridentate ONN ligand system versus benzimidazoline formation. Inorg Chem Commun 11(5):492–496. https://doi.org/10.1016/j.inoche.2008.01.025

    CAS  Article  Google Scholar 

  7. 7.

    Haga R, Burschka C, Tacke R (2008) Syntheses, structures, and reactions of 2,2,3,3-Tetrakis(trifluoromethanesulfonato)tetrasilanes: Hexacoordination ([4 + 2] coordination) of the two central silicon atoms. Organometallics 27(17):4395–4400. https://doi.org/10.1021/om800332j

    CAS  Article  Google Scholar 

  8. 8.

    Fester G, Wagler J, Brendler E, Böhme U, Roewer G, Kroke E (2008) Octahedral adducts of Dichlorosilane with substituted pyridines: synthesis, reactivity and a comparison of their structures and29Si NMR chemical shifts. Chem Eur J 14(10):3164–3176. https://doi.org/10.1002/chem.200701412

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Theis B, Burschka C, Tacke R (2008) Optically Active Zwitterionicλ5Si,λ5Si′-Disilicates: Syntheses, Crystal Structures, and Behavior in Aqueous Solution. Chem Eur J 14(15):4618–4630. https://doi.org/10.1002/chem.200701858

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Berzelius JJ (1824) Untersuchungen über die Flussspathsäure und deren merkwürdigsten Verbindungen. Annalen der Physik und der physikalischen Chemie 77(6):169–230

    Article  Google Scholar 

  11. 11.

    Corriu R (2003) Organosilicon chemistry and nanoscience. J Organomet Chem 686(1–2):32–41. https://doi.org/10.1016/s0022-328x(03)00724-1

    CAS  Article  Google Scholar 

  12. 12.

    Wagler J, Bohme U, Kroke E (2014). Struct Bond 155:29

    CAS  Article  Google Scholar 

  13. 13.

    Min GK, Hernández D, Skrydstrup T (2012) Efficient routes to carbon–silicon bond formation for the synthesis of silicon-containing peptides and Azasilaheterocycles. Acc Chem Res 46(2):457–470. https://doi.org/10.1021/ar300200h

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Lebeau B, Innocenzi P (2011) Hybrid materials for optics and photonics. Chem Soc Rev 40(2):886–906. https://doi.org/10.1039/c0cs00106f

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Wei W, Djurovich PI, Thompson ME (2010) Properties of Fluorenyl Silanes in organic light emitting diodes. Chem Mater 22(5):1724–1731. https://doi.org/10.1021/cm903146x

    CAS  Article  Google Scholar 

  16. 16.

    Muthmann S, Gordijn A (2011) Amorphous silicon solar cells deposited with non-constant silane concentration. Sol Energy Mater Sol Cells 95(2):573–578. https://doi.org/10.1016/j.solmat.2010.09.019

    CAS  Article  Google Scholar 

  17. 17.

    Ciriminna R, Carà PD, Sciortino M, Pagliaro M (2011) Catalysis with doped sol-gel silicates. Advanced Synthesis & Catalysis 353(5):677–687. https://doi.org/10.1002/adsc.201000731

    CAS  Article  Google Scholar 

  18. 18.

    Naumov RN, Itazaki M, Kamitani M, Nakazawa H (2012) Selective Dehydrogenative Silylation–hydrogenation reaction of Divinyldisiloxane with Hydrosilane catalyzed by an Iron complex. J Am Chem Soc 134(2):804–807. https://doi.org/10.1021/ja209436s

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Chatgilialoglu C (1992) Organosilanes as radical-based reducing agents in synthesis. Acc Chem Res 25(4):188–194. https://doi.org/10.1021/ar00016a003

    CAS  Article  Google Scholar 

  20. 20.

    Greene T, Wuts P (1991) Protecting groups in organic synthesis 2nd Ed. Wiley, New York

    Google Scholar 

  21. 21.

    Blau K, Halket J (1993) Handbook of derivatives for chromatography2nd edn. J. wileyand Sons, New York

    Google Scholar 

  22. 22.

    Matinlinna PJ, Lassila LVJ, Ozcan M, Yli-Urpo A, Vallittu PK (2004). Int Prosthodont 17:155

    Google Scholar 

  23. 23.

    Song JJ, Gallou F, Reeves JT, Tan Z, Yee NK, Senanayake CH (2006) Activation of TMSCN by N-heterocyclic Carbenes for facile Cyanosilylation of carbonyl compounds. The Journal of Organic Chemistry 71(3):1273–1276. https://doi.org/10.1021/jo052206u

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Song JJ, Gallou F, Reeves JT, Tan Z, Yee NK, Senanayake CH (2006) Activation of TMSCN by N-heterocyclic Carbenes for facile Cyanosilylation of carbonyl compounds. The Journal of Organic Chemistry 71(3):1273–1276. https://doi.org/10.1021/jo052206u

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Iwanami K, Aoyagi M, Oriyama T (2005) An efficient and facile one-pot synthesis of cyanohydrin esters from carbonyl compounds catalyzed by iron(III) chloride. Tetrahedron Lett 46(44):7487–7490. https://doi.org/10.1016/j.tetlet.2005.09.003

    CAS  Article  Google Scholar 

  26. 26.

    Jenner G (1999) Addition of trimethylsilyl cyanide to aromatic ketones promoted by organic solutions of lithium salts. Tetrahedron Lett 40(3):491–494. https://doi.org/10.1016/s0040-4039(98)02419-8

    CAS  Article  Google Scholar 

  27. 27.

    Kurono N, Yamaguchi M, Suzuki K, Ohkuma T (2005) Lithium chloride: an active and simple catalyst for Cyanosilylation of aldehydes and ketones. The Journal of Organic Chemistry 70(16):6530–6532. https://doi.org/10.1021/jo050791t

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Suzuki Y, Bakar MA, Muramatsu K, Sato M (2006) Cyanosilylation of aldehydes catalyzed by N-heterocyclic Carbenes. ChemInform 37(31). https://doi.org/10.1002/chin.200631052

  29. 29.

    Surya Prakash GK, Habiba Vaghoo, Chiradeep Panja, Vijayalakshmi Surampudi, Roman Kultyshev, Thomas Mathew, George A. Olah, PNAS 2007, 104, 3026–3030

  30. 30.

    Kim SS, Rajagopal G, George SC (2007) Solvent-free Cyanosilylation of ketones with (CH3)3SiCN (TMSCN) catalyzed by NbF5. ChemInform 38(34). https://doi.org/10.1002/chin.200734081

  31. 31.

    Hamashima Y, Sawada D, Nogami H, Kanai M, Shibasaki M (2001) Highly enantioselective cyanosilylation of aldehydes catalyzed by a Lewis acid–Lewis base bifunctional catalyst. Tetrahedron 57(5):805–814. https://doi.org/10.1016/s0040-4020(00)01039-5

    CAS  Article  Google Scholar 

  32. 32.

    Hamashima Y, Sawada D, Kanai M, Shibasaki M (1999) A new Bifunctional asymmetric catalysis: an efficient catalytic asymmetric Cyanosilylation of aldehydes. J Am Chem Soc 121(11):2641–2642. https://doi.org/10.1021/ja983895c

    CAS  Article  Google Scholar 

  33. 33.

    Ryu DH, Corey EJ (2004) Highly Enantioselective Cyanosilylation of aldehydes catalyzed by a chiral Oxazaborolidinium ion. J Am Chem Soc 126(26):8106–8107. https://doi.org/10.1021/ja0475959

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Li Y, He B, Qin B, Feng X, Zhang G (2004) Highly Enantioselective Cyanosilylation of aldehydes catalyzed by novel β-amino alcohol−titanium complexes. The Journal of Organic Chemistry 69(23):7910–7913. https://doi.org/10.1021/jo0488356

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Hatano M, Ikeno T, Miyamoto T, Ishihara K (2005) Chiral Lithium Binaphtholate aqua complex as a highly effective asymmetric catalyst for cyanohydrin synthesis. J Am Chem Soc 127(31):10776–10777. https://doi.org/10.1021/ja051125c

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fazlur-Rahman Nawaz Khan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 8614 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dalavai, R., Khan, F.N. Facile synthesis of 2-(2-chloroquinolin-3-Yl)-2-((trimethylsilyl)oxy) acetonitriles utilizing TMSCN-ZnI2/DCM. Silicon (2020). https://doi.org/10.1007/s12633-020-00519-w

Download citation

Keywords

  • Silicon
  • TMSCN
  • Silylated quinolines
  • Quinoliny cyanohydrins
  • ZnI2
  • Organosilicon chemistry