Fabrication and Microstructure of Micro and Nano Silicon Carbide Reinforced Copper Metal Matrix Composites/Nanocomposites


This study investigates the influence of micro and nano silicon carbide on properties of copper matrix composites/nanocomposites containing up to 4 wt% of reinforcement concentration. It was observed that an increase of SiC (both micro and nano sized) content resulted in a higher hardness, compressive strength and better wear properties. However, nano SiC reinforced composite materials have better hardness, compressive strength and wear properties as compared with micro sized SiC reinforced composites. Grain refinement of composite/nanocomposite materials as compared with pure copper materials were observed from the metallurgical microscopic images. Further, scanning electron microscopic images revealed uniform dispersion/distribution of reinforcing materials in the copper matrix, and good bond formation between component materials. As the micro/nano sized SiC reinforcement in the copper matrix decreased the density of resultant composite/nanocomposite materials, therefore, nano sized SiC reinforcement will be helpful to fabricate light weight copper matrix nanocomposite materials for various industrial applications.

This is a preview of subscription content, log in to check access.


  1. 1.

    Kumar GBV, Mageshvar R, Rejath R, Karthik S, Pramod R, Rao CSP (2019) Characterization of glass fiber bituminous coal tar reinforced polymer matrix composites for high performance applications. Composites Part B-Engineering 175. https://doi.org/10.1016/j.compositesb.2019.107156

  2. 2.

    Moreira RCS, Kovalenko O, Souza D, Reis RP (2019) Metal matrix composite material reinforced with metal wire and produced with gas metal arc welding. J Compos Mater 53(28–30):4411–4426

    CAS  Google Scholar 

  3. 3.

    Du JG et al (2019) A review on machining of carbon fiber reinforced ceramic matrix composites. Ceram Int 45(15):18155–18166

    CAS  Google Scholar 

  4. 4.

    Singh A, and Bala N (2019) Relative sliding wear behavior of Mg metal matrix composites fabricated by stir cast route. Mater Res Exp 6(10). https://doi.org/10.1088/2053-1591/ab4313

  5. 5.

    Singh N, Jha P, Parkash O, Kumar D (2019) Recent developments on Wear and corrosion behavior of Iron/Iron-nickel metal matrix composites reinforced with zirconia. Trans Indian Inst Metals 72(8):2151–2158

    CAS  Google Scholar 

  6. 6.

    Venkatesh R, Srinivas S (2019) Effect of heat treatment on hardness, tensile strength and microstructure of hot and cold forged Al6061 metal matrix composites reinforced with silicon carbide particles Mater Res Exp 6(10). https://doi.org/10.1088/2053-1591/ab4297

  7. 7.

    Venkatesh R, Rao VS (2018) Thermal, corrosion and wear analysis of copper based metal matrix composites reinforced with alumina and graphite. Defence Technol 14(4):346–355

    Google Scholar 

  8. 8.

    Chandio AD, Ansari MB, Hussain S, Siddiqui MA (2019) Silicon carbide effect as reinforcement on Aluminium metal matrix composite. J Chem Soc Pak 41(4):650–654

    CAS  Google Scholar 

  9. 9.

    Kollo L, Leparoux M, Bradbury CR, Jaggi C, Carreno-Morelli E, Rodriguez-Arbaizar M (2010) Investigation of planetary milling for nano-silicon carbide reinforced aluminium metal matrix composites. J Alloys Compd 489(2):394–400

    CAS  Google Scholar 

  10. 10.

    Pan Y et al (2019) Tribological and mechanical properties of copper matrix composites reinforced with carbon nanotube and alumina nanoparticles Mater Res Exp 6(11). https://doi.org/10.1088/2053-1591/ab4674

  11. 11.

    Zhou HB, Yao P, Xiao Y, Fan K, Zhang Z, Gong T, Zhao L, Deng M, Liu C, Ling P (2019) Friction and wear maps of copper metal matrix composites with different iron volume content. Tribol Int 132:199–210

    CAS  Google Scholar 

  12. 12.

    Singh MK, Gautam RK (2019) Structural, mechanical, and electrical behavior of ceramic-reinforced copper metal matrix hybrid composites. J Mater Eng Perform 28(2):886–899

    CAS  Google Scholar 

  13. 13.

    Huang SJ, Ali AN (2019) Experimental investigations of effects of SiC contents and severe plastic deformation on the microstructure and mechanical properties of SiCp/AZ61 magnesium metal matrix composites. J Mater Process Technol 272:28–39

    CAS  Google Scholar 

  14. 14.

    Bhoi NK, Singh H, Pratap S (2020) Developments in the aluminum metal matrix composites reinforced by micro/nano particles - a review. J of Com Mater 54(6):813–833

  15. 15.

    Ayyappadas C, Annamalai AR, Agrawal DK, Muthuchamy A (2017) Conventional and microwave assisted sintering of copper-silicon carbide metal matrix composites: a comparison, Metall Res Technol 114(5). https://doi.org/10.1051/metal/2017033

  16. 16.

    Ayyappadas C, Muthuchamy A, Annamalai AR, Agrawal DK (2017) An investigation on the effect of sintering mode on various properties of copper-graphene metal matrix composite. Adv Powder Technol 28(7):1760–1768

    CAS  Google Scholar 

  17. 17.

    Dash K, Ray BC, Chaira D (2012) Synthesis and characterization of copper-alumina metal matrix composite by conventional and spark plasma sintering. J Alloys Compd 516:78–84

    CAS  Google Scholar 

  18. 18.

    Ivanus RC (2009) Tungsten-copper metal matrix composites for packaging heat sink applications. Metalurgia Inter 14(5):26–32

    Google Scholar 

  19. 19.

    Thiraviam R, Sornakumar T, Kumar AS (2008) Development of copper: alumina metal matrix composite by powder metallurgy method. Inter J Mater Prod Technol 31(2–4):305–313

    CAS  Google Scholar 

  20. 20.

    Bai H, Ma NG, Lang J, Jin Y, Zhu CX, Ma Y (2013) Thermo-physical properties of boron carbide reinforced copper composites fabricated by electroless deposition process. Mater Des 46:740–745

    CAS  Google Scholar 

  21. 21.

    Abd El Aal MI, Kim HS (2018) Effect of the fabrication method on the wear properties of copper silicon carbide composites. Tribol Int 128:140–154

    CAS  Google Scholar 

  22. 22.

    Fatoba OS, Popoola O, Popoola API (2015) The effects of silicon carbide reinforcement on the properties of Cu/SiCp composites. Silicon 7(4):351–356

    CAS  Google Scholar 

  23. 23.

    Wei X et al. (2019) High strength and electrical conductivity of copper matrix composites reinforced by carbon nanotube-graphene oxide hybrids with hierarchical structure and nanoscale twins. Diam Rel Mater 99. https://doi.org/10.1016/j.diamond.2019.107537

  24. 24.

    Wu MX, Chen Z, Huang CJ, Huang KL, Jiang K, Liu J (2019) Graphene platelet reinforced copper composites for improved tribological and thermal properties. RSC Adv 9:39883–39892

    CAS  Google Scholar 

  25. 25.

    Babu RV, Kanagaraj S (2019) Sintering behaviour of copper/carbon nanotube composites and their characterization. Adv Powder Technol 30(10):2200–2210

    Google Scholar 

  26. 26.

    Kang JL, Nash P, Li JJ, Shi CS, Zhao NQ, Gu SJ (2009) The effect of heat treatment on mechanical properties of carbon nanofiber reinforced copper matrix composites. J Mater Sci 44:5602–5608

    CAS  Google Scholar 

  27. 27.

    Chmielewski M, Pietrzak K, Strojny-Nedza A, Jarzabek D, Nosewicz S (2017) Investigations of interface properties in copper-silicon carbide composites. Arch Metall Mater 62(2):1315–1318

    CAS  Google Scholar 

  28. 28.

    Hidalgo-Manrique P, Lei XZ, Xu RY, Zhou MY, Kinloch IA, Young RJ (2019) Copper/graphene composites: a review. J Mater Sci 54:12236–12289

  29. 29.

    Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites - a review. Int Mater Rev 55(1):41–64

    CAS  Google Scholar 

  30. 30.

    Munir KS, Kingshott P, Wen C (2015) Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy-a review. Crit Rev Solid State Mater Sci 40(1):38–55

    CAS  Google Scholar 

  31. 31.

    Alaneme KK, Odoni BU (2016) Mechanical properties, wear and corrosion behavior of copper matrix composites reinforced with steel machining chips. Eng Sci Technol, an Inter J 19(3):1593–1599

  32. 32.

    Casati R, Vedani M (2014) Metal matrix composites reinforced by Nano-particles-a review. Metals 4:65–83

    Google Scholar 

  33. 33.

    Rathee S, Maheshwari S, Siddiquee AN, Srivastava M (2018) Distribution of reinforcement particles in surface composite fabrication via friction stir processing: suitable strategy. Mater Manuf Process 33(3):262–269

    CAS  Google Scholar 

  34. 34.

    Rathee S, Maheshwari S, Siddiquee AN, Srivastava M (2018) A review of recent Progress in solid state fabrication of composites and functionally graded systems via friction stir processing. Crit Rev Solid State Mater Sci 43(4):334–366

  35. 35.

    Rathee S, Maheshwari S, Siddiquee AN (2018) Issues and strategies in composite fabrication via friction stir processing: a review. Mater Manuf Process 33(3):239–261

    CAS  Google Scholar 

  36. 36.

    Vetters H, Schulz A, Uhlenwinkel V, Bauckhage K, Mayr P (2003) Spray casting of eutectic ferrous alloys, an alternative to powder metallurgy. Int J Cast Met Res 16(1–3):371–375

  37. 37.

    Dewidar MM, Yoon HC, Lim JK (2006) Mechanical properties of metals for biomedical applications using powder metallurgy process: a review. Met Mater Int 12. https://doi.org/10.1007/BF03027531

  38. 38.

    Bandil K, Vashisth H, Kumar S, Verma L, Jamwal A, Kumar D, Singh N, Sadasivuni KK, Gupta P (2019) Microstructural, mechanical and corrosion behaviour of Al-Si alloy reinforced with SiC metal matrix composite. J Compos Mater 53(28–30):4215–4223

    CAS  Google Scholar 

  39. 39.

    Somani N, Tyagi YK, Kumar P, Srivastava V, Bhowmick H (2019) Enhanced tribological properties of SiC reinforced copper metal matrix composites. Materials Research Express 6(1), Art. no. 016549

  40. 40.

    Radhika N, Karthik R, Gowtham S, Ramkumar S (2019) Synthesis of cu-10Sn/SiC metal matrix composites and experimental investigation of its adhesive wear behaviour. Silicon 11(1):345–354

    CAS  Google Scholar 

  41. 41.

    Srivastava M, Rathee S, Siddiquee AN, Maheshwari S (2019) Investigation on the effects of silicon carbide and cooling medium during multi-pass FSP of Al-Mg/ SiC surface composites. Silicon 11(4):2149–2157

    CAS  Google Scholar 

  42. 42.

    Rathee S, Maheshwari S, Siddiquee AN, Srivastava M (2019) Investigating the effects of SiC particle sizes on microstructural and mechanical properties of AA5059/SiC surface composites during multi-pass FSP. Silicon 11(2):797–805

    CAS  Google Scholar 

  43. 43.

    Cho S et al (2020) Enhanced high-temperature compressive strength of TiC reinforced stainless steel matrix composites fabricated by liquid pressing infiltration process. J Alloy Compd 817. https://doi.org/10.1016/j.jallcom.2019.152714

  44. 44.

    Cao FH, Chen C, Wang ZY, Muthuramalingam T, Anbuchezhiyan G (2019) Effects of silicon carbide and tungsten carbide in Aluminium metal matrix composites. Silicon 11(6):2625–2632

    CAS  Google Scholar 

  45. 45.

    Dong CG, Wang RC, Guo SQ (2019) Microstructures and mechanical properties of cu-coated SiC particles reinforced AZ61 alloy composites. Coatings 9. https://doi.org/10.3390/coatings9120820

Download references

Author information



Corresponding author

Correspondence to Subrata Mondal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahato, A., Mondal, S. Fabrication and Microstructure of Micro and Nano Silicon Carbide Reinforced Copper Metal Matrix Composites/Nanocomposites. Silicon (2020). https://doi.org/10.1007/s12633-020-00491-5

Download citation


  • Compressive strength
  • Interfacial bonding
  • Metal matrix composite
  • Morphology
  • Silicon carbide