Design, Facile Synthesis and Characterization of Porphyrin-Zirconium-Ferrite@SiO2 Core-Shell and Catalytic Application in Cyclohexane Oxidation


In this study, a new magnetic ZrFe2O4@SiO2-TCPP nanocatalyst with high efficiency was used for the oxidation of cyclohexane to cyclohexanone (Ke) and cyclohexanol (Al). The mesoporous ZrFe2O4 nanoparticles, with a nanocauliflower structure was synthesized via solvothermal method and it was coated with SiO2 sell by tetraethyl orthosilicate (TEOS) to fabricate the ZrFe2O4@SiO2 core-shell. Then, this composite was modified by 5, 10, 15, 20-meso-tetrakis(4-carboxyphenyl) porphyrin (TCPP). FT-IR, XRD, XPS, FE-SEM, EDX, TEM, VSM, BET and fluorescence analyses were used to characterize the prepared nanomaterials. Optimization of the reaction conditions, as one of the most applicable Response Surface Methodologies (RSM), was executed by Central Composite Design (CCD) based on the applied mathematical modeling, and the results were analyzed by GC-Mass Analytical Testing Lab Services. The maximum Ke/Al products were 33.6 and 18.9%, respectively. Simple separation by a magnetic field, stability and recoverability, are the advantages of this new catalyst.

This is a preview of subscription content, access via your institution.


  1. 1.

    Tong J, Cai X, Wang H, Xia C (2013) Efficient magnetic CoFe2O4 nanocrystal catalyst for aerobic oxidation of cyclohexane prepared by sol–gel auto-combustion method: effects of catalyst preparation parameters. J Sol-Gel Sci Technol 66:452–459

    CAS  Google Scholar 

  2. 2.

    Davis DD, and Kemp DR, in “Kirk–Othmer (1991) Encyclopedia of Chemical Technology” (J. I. Kroschwitz and M. Howe-Grant, Eds.), 1: 466

  3. 3.

    Castellan A, Bart JCJ, Cavallaro S (1991) Industrial production and use of adipic acid. Catal Today 9:237–254

    CAS  Google Scholar 

  4. 4.

    Dumas T, Bulani W (1974) Oxidation of petrochemicals: chemistry and technology. Applied Science, London, pp 53–64

    Google Scholar 

  5. 5.

    Chavan SA, Srinivas D, Ratnasamy P (2002) Oxidation of cyclohexane, cyclohexanone, and cyclohexanol to adipic acid by a non HNO3 route over Co/Mn cluster complexes. J Catal 212:39–45

    CAS  Google Scholar 

  6. 6.

    Schuchardt U, Carvalho WA, Spinacé EV (1993) Why is it interesting to study cyclohexane oxidation? Synlett 10:713–718

    Google Scholar 

  7. 7.

    Schuchardt U, Cardoso D, Sercheli R, Pereira R, Da Cruz RS, Guerreiro MC, Mandelli D, Spinacé EV, Pires EL (2001). Appl Catal A Gen 211:1–17

    CAS  Google Scholar 

  8. 8.

    Suresh AK, Sharma MM, Sridhar T (2000) Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons. Ind Eng Chem Res 39:3958–3997

    CAS  Google Scholar 

  9. 9.

    Lang X, Chen X, Zhao J (2014) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43:473–486

    CAS  PubMed  Google Scholar 

  10. 10.

    Sideri IK, Voutyritsa E, Kokotos CG (2018) Photoorganocatalysis, small organic molecules and light in the service of organic synthesis: the awakening of a sleeping giant. Org Biomol Chem 16:4596–4614

    CAS  PubMed  Google Scholar 

  11. 11.

    Sankaranarayanapillai S, Sf V, Werner RT (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3428–3459

    Google Scholar 

  12. 12.

    Ribeiro AP, Matias IA, Alegria EC, Ferraria AM, Botelho do Rego AM, Pombeiro AJ, Martins LM (2018) New trendy magnetic C-scorpionate iron catalyst and its performance towards cyclohexane oxidation. Catalysts 8:69

    Google Scholar 

  13. 13.

    Maleki A, Hajizadeh Z (2019) Magnetic aluminosilicate nanoclay: a natural and efficient nanocatalystfor the green synthesis of 4H-Pyran derivatives. Silicon 11:2789–2798

    CAS  Google Scholar 

  14. 14.

    Nabiyouni G, Ghanbari D, Ghasemi J, Yousofnejad A (2015) Microwave-assisted synthesis of MgFe2O4-ZnO nanocomposite and its photo-catalyst investigation in methyl orange degradation. J Nanostruct 5:289–295

    Google Scholar 

  15. 15.

    Rahimi R, Kerdari H, Rabbani M, Shafiee M (2011) Synthesis, characterization and adsorbing properties of hollow Zn-Fe2O4 nanospheres on removal of Congo red from aqueous solution. Desalination 280:412–418

    CAS  Google Scholar 

  16. 16.

    Jiang W, Zhang X, Gong X, Yan F, Zhang Z (2010) Sonochemical synthesis and characterization of magnetic separable Fe3O4–TiO2 nanocomposites and their catalytic properties. Inter J Smart Nano Mater 1:278–287

    CAS  Google Scholar 

  17. 17.

    Wu W, Xiao X, Zhang S, Ren F, Jiang C (2011) Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue. Nanoscale Res Lett 6:533

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Soltani RDC, Mashayekhi M, Khataee A, Ghanadzadeh MJ, Sillanpää M (2018) Hybrid sonocatalysis/electrolysis process for intensified decomposition of amoxicillin in aqueous solution in the presence of magnesium oxide nanocatalyst. J Ind Eng Chem 64:373–382

    Google Scholar 

  19. 19.

    Gangwar A, Alla S, Srivastava M, Meena S, Prasadrao E, Mandal R, Yusuf S, Prasad N (2016) Structural and magnetic characterization of Zr-substituted magnetite (ZrxFe3− xO4, 0≤ x≤ 1). J Magn Magn Mater 401:559–566

    CAS  Google Scholar 

  20. 20.

    Zhang L, Hp S, Zheng H, Lin T, Guo Z (2016) Synthesis and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process. Int J Miner Metall Mater 23:1112–1118

    CAS  Google Scholar 

  21. 21.

    Hajizadeh Z, Maleki A, Rahimi R, Eivazzadeh-Keihan R (2019) Halloysite nanotubes modified by Fe3O4 nanoparticles and applied as a natural and efficient nanocatalyst for the symmetrical Hantzsch reaction. Silicon:1–10.

  22. 22.

    Maleki A, Kari T, Aghaei M (2017) Fe3O4@SiO2@TiO2-OSO3H: an efficient hierarchical nanocatalyst for the organic quinazolines syntheses. J Porous Mater 24:1481–1496

    CAS  Google Scholar 

  23. 23.

    Groves, JT, Shalyaev K, Lee J, Kadish KM, Smith KM, Guilard R (2000) The Porphyrin handbook, Eds. Academic Press 4: 17–40

  24. 24.

    Stephenson NA, Bell AT (2007) Effects of porphyrin composition on the activity and selectivity of the iron (III) porphyrin catalysts for the epoxidation of cyclooctene by hydrogen peroxide. J Mol Catal A Chem 272:108–117

    CAS  Google Scholar 

  25. 25.

    Laybourn A, Dawson R, Clowes R, Hasell T, Cooper AI, Khimyak YZ, Adams DJ (2014) Network formation mechanisms in conjugated microporous polymers. Polym Chem 5:6325–6333

    CAS  Google Scholar 

  26. 26.

    Monnereau C, Gomez J, Blart E, Odobel F (2005) Photoinduced electron transfer in platinum (II) terpyridinyl acetylide complexes connected to a porphyrin unit. Inorg Chem 44:4806–4817

    CAS  PubMed  Google Scholar 

  27. 27.

    Kira A, Umeyama T, Matano Y, Yoshida K, Isoda S, Park JK, Kim D, Imahori HJ (2009) Supramolecular donor−acceptor Heterojunctions by Vectorial stepwise assembly of Porphyrins and coordination-bonded fullerene arrays for photocurrent generation. Am Chem Soc 131:3198–3200

    CAS  Google Scholar 

  28. 28.

    Liu CY, Bard A (1999) Optoelectronic properties and memories based on organic single-crystal thin films. J Acc Chem Res 32(3):235–245

    CAS  Google Scholar 

  29. 29.

    Fungo F, Otero L, Borsarelli CD, Durantini EN, SilberJJ SLJ (2002) Optoelectronic properties and memories based on organic single-crystal thin films. Phys Chem B 106:4070–4078

    CAS  Google Scholar 

  30. 30.

    Gervaldo M, Fungo F, Durantini EN, Silber JJ, Sereno L, Otero L (2005) Carboxyphenyl metalloporphyrins as photosensitizers of semiconductor film electrodes. A study of the effect of different central metals. J Phys Chem B 109:20953–20962

    CAS  PubMed  Google Scholar 

  31. 31.

    Drain CM, Varotto A, Radivojevic I (2009) Self-organized porphyrinic materials. Chem Rev 109:1630–1658

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Liu Q, Yang Y, Li H, Zhu R, Shao Q, Yang S, Xu J (2015) NiO nanoparticles modified with 5,10,15,20-tetrakis (4-carboxyl pheyl) porphyrin promising peroxidase mimetics for H2O2 and glucose detection. Biosens Bioelectron 64:147–153

    CAS  PubMed  Google Scholar 

  33. 33.

    Kathiravan A, Renganathan R (2009) Effect of anchoring group on the photosensitization of colloidal TiO2 nanoparticles with porphyrins. J Colloid Interface Sci 331:401–407

    CAS  PubMed  Google Scholar 

  34. 34.

    Darvishi Cheshmeh Soltani R, Rezaee A, Khataee RA, Godini H (2014) Optimisation of the operational parameters during a biological nitrification process using response surface methodology. Can J Chem Eng 92:13–22

    CAS  Google Scholar 

  35. 35.

    Shaykhi ZM, Zinatizadeh AAL (2014) Statistical modeling of photocatalytic degradation of synthetic amoxicillin wastewater (SAW) in an immobilized TiO2 photocatalytic reactor using response surface methodology (RSM). J Taiwan Inst Chem Eng 45:1717–1726

    CAS  Google Scholar 

  36. 36.

    Hassani A, Soltani RDC, Karaca S, Khataee A (2015) Preparation of montmorillonite–alginate nanobiocomposite for adsorption of a textile dye in aqueous phase: isotherm, kinetic and experimental design approaches. J Ind Eng Chem 21:1197–1207

    CAS  Google Scholar 

  37. 37.

    Roosta M, Ghaedi M, Daneshfar A, Sahraei R, Asghari A (2015) Optimization of combined ultrasonic assisted/tin sulfide nanoparticle loaded on activated carbon removal of erythrosine by response surface methodology. J Ind Eng Chem 21:459–469

    CAS  Google Scholar 

  38. 38.

    Weissman SA, Anderson NG (2015) Design of Experiments (DoE) and process optimization. Org Process Res Dev 19:1605–1633

    CAS  Google Scholar 

  39. 39.

    Adler AD, Longo FR, Finarelli JD, Goldmacher J, Assour J, Korsakoff L (1967) A simplified synthesis for meso-tetraphenylporphine. J Organomet Chem 32:476–476

    CAS  Google Scholar 

  40. 40.

    Li D, Dong W, Sun S, Shi Z, Feng S (2008) Photocatalytic degradation of acid chrome blue K with porphyrin-sensitized TiO2 under visible light. J Phys Chem C 112:14878–14882

    CAS  Google Scholar 

  41. 41.

    Wang W, Ma R, Wu Q, Wang C, Wang Z (2013) Magnetic microsphere-confined graphene for the extraction of polycyclic aromatic hydrocarbons from environmental water samples coupled with high performance liquid chromatography–fluorescence analysis. J Chromatogr A 1293:20–27

    CAS  PubMed  Google Scholar 

  42. 42.

    Rahimi R, Zargari S, Yousefi A, Berijani MY, Ghaffarinejad A, Morsali A (2015) Visible light photocatalytic disinfection of E. coli with TiO2–graphene nanocomposite sensitized with tetrakis (4-carboxyphenyl) porphyrin. Appl Surf Sci 355:1098–1106

    CAS  Google Scholar 

  43. 43.

    Yua J, Zhua S, Panga L, Chena P, Zhu GT (2018) Porphyrin-based magnetic nanocomposites for efficient extraction of polycyclic aromatic hydrocarbons from water samples. J Chromatogr A 1540:1–10

    Google Scholar 

  44. 44.

    Bassiouk M, Basiuk VA, Basiuk EV, Álvarez-Zauco E, Martínez-Herrera M, Rojas-Aguilar A, Puente-Lee I (2013) Noncovalent functionalization of single-walled carbon nanotubes with porphyrins. Appl Surf Sci 275:168–177

    CAS  Google Scholar 

  45. 45.

    Bosi F, Hålenius U, Skogby H (2009) Crystal chemistry of the magnetite-ulvospinel series. Am Min 94:181–189

    CAS  Google Scholar 

  46. 46.

    Sorescu M, Xu T, Wise A, Díaz-Michelena M, McHenry ME (2012) Studies on structural, magnetic and thermal properties of xFe2TiO4-(1− x) Fe3O4 (0≤ x≤ 1) pseudo-binary system. J Magn Magn Mater 324:1453–1462

    CAS  Google Scholar 

  47. 47.

    Yan D, Xin J, Zhao Q, Gao K, Lu X, Wang G, Zhang S (2018) Fe-Zr-O catalyzed base-free aerobic oxidation of 5-HMF to 2,5-FDCA as a bio-based polyester monomer. Catal Sci Technol 8:164–175

    CAS  Google Scholar 

  48. 48.

    Subramanian A, Annamalai A, Lee HH, Choi SH, Ryu J, Park JH, Jang JS (2016) Trade-off between Zr passivation and Sn doping on hematite nanorod photoanodes for efficient solar water oxidation: effects of a ZrO2 underlayer and FTO deformation. ACS Appl Mater Interfaces 8:19428–19437

    CAS  PubMed  Google Scholar 

  49. 49.

    Luo JM, Luo XB, Hu CZ, Crittenden JC, Qu JC (2016) Zirconia (ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies. ACS Appl Mater Interfaces 8:18912–18921

    CAS  PubMed  Google Scholar 

  50. 50.

    Kouotou PM, Vieker H, Tian ZY, Ngamou PHT, El Kasmi A, Beyer A, Golzhauser A, KohseHoinghaus K (2014) Structure activity relation of spinel type Co–Fe oxides for low-temperature CO oxidation. Catal Sci Technol 4:3359–3367

    Google Scholar 

  51. 51.

    Nie JF, Liu HC (2014) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on manganese oxide catalysts. J Catal 316:57–66

    CAS  Google Scholar 

  52. 52.

    Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem 117:2842–2845

    Google Scholar 

  53. 53.

    Yu BY, Kwak SY (2011) Self-assembled mesoporous Co and Ni-ferrite spherical clusters consisting of spinel nanocrystals prepared using a template-free approach. Dalton Trans 40:9989–9998

    CAS  PubMed  Google Scholar 

  54. 54.

    Wang Y, Zhao H, Li M, Fan J, Zhao G (2014) Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl Catal B-Environ 147:534–545

    CAS  Google Scholar 

  55. 55.

    Abbas M, Torati S, Lee C, Rinaldi C, Kim C (2014) Fe3O4/SiO2 core/shell nanocubes: novel coating approach with tunable silica thickness and enhancement in stability and biocompatibility. J Nanomed Nanotechnol 5:1–8

    Google Scholar 

  56. 56.

    Issa B, Obaidat I, Albiss B, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Sun L, Li Y, Sun M, Wang H, Xu S, Zhang C, Yang Q (2011) Porphyrin-functionalized Fe3O4@SiO2 core/shell magnetic colorimetric material for detection, adsorption and removal of Hg2+ in aqueous solution. New J Chem 35:2697–2270

    CAS  Google Scholar 

  58. 58.

    Li L, Yang Q, Chen S, Hou X, Liu B, Lua J, Jiang H-L (2017) Boosting selective oxidation of cyclohexane over a metal–organic framework by hydrophobicity engineering of pore walls. Chem Commun 53(72):10026–10029

    CAS  Google Scholar 

  59. 59.

    Bezaatpour A, Khatami S, Nejati K (2017) Cis-dioxo-Mo (VI) salophen complex supported on Fe3O4@SiO2 nanoparticles as an efficient magnetically separable and reusable nanocatalyst for selective epoxidation of olefins. J Iran Chem Soc 14(10):2105–2115

    CAS  Google Scholar 

  60. 60.

    Pires E-L, Wallau M, Schuchardt U (1997) Selective oxidation of cyclohexane over rare earth exchanged zeolite Y. Stud Surf Sci Catal 110:1025–1027

    CAS  Google Scholar 

  61. 61.

    Xie Y, Zhang F, Liu P, Hao F, Luo H (2013) Synthesis and catalytic properties of trans-A2B2-type metalloporphyrins in cyclohexane oxidation. Can J Chem 92(1):49–53

    Google Scholar 

  62. 62.

    Zhang Q, Chen C, Wang M, Cai J, Xu J, Xia C (2011) Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation. Nanoscale Res Lett 6(1):586

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Zhao H, Zhou J, Luo H, Zen C (2006) Synthesis, characterization of Ag/MCM-41 and the catalytic performance for liquid-phase oxidation of cyclohexane. Catal Lett 108:1–2

    Google Scholar 

  64. 64.

    Maleki A, Aghaei M, Hafizi-Atabak H-R, Ferdowsi M (2017) Ultrasonic treatment of CoFe2O4@B2O3-SiO2 as a new hybrid magnetic composite nanostructure and catalytic application in the synthesis of dihydroquinazolinones. Ultrason Sonochem 37:260–266

    CAS  PubMed  Google Scholar 

Download references


The authors gratefully acknowledge the partial support by Iran University of Science and Technology.

Author information



Corresponding authors

Correspondence to Rahmatollah Rahimi or Ali Maleki.

Ethics declarations

Disclosure Statement

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khosravi, H.B., Rahimi, R., Rabbani, M. et al. Design, Facile Synthesis and Characterization of Porphyrin-Zirconium-Ferrite@SiO2 Core-Shell and Catalytic Application in Cyclohexane Oxidation. Silicon 13, 451–465 (2021).

Download citation


  • Magnetic nanoparticles
  • Zirconium-ferrite
  • Mesoporous
  • Core-shell
  • TCPP
  • Oxidation
  • Cyclohexane