Skip to main content

Copper Lithium Silicate/ZrO2 Nanoparticles-Coated Kevlar for Improving UV-Vis Absorbance/ Protection Properties

Abstract

Kevlar as super strength polyamide textile fabric treated through five concentration of (15 Cu2O3: 5 Li2O: (80-x) SiO2: (1–5) ZrO2) nano-gel which successfully prepared through sol gel method at room temperature for using as a coating layers for Kevlar. The physical/chemical properties of treated and un-treated Kevlar were examined through FTIR, XRD, SEM and UV- absorbance and reflectance. The treatment efficient on Ultraviolet Protection Factor (UPF) and Mechanical properties for treated and un-treated Kevlar was also examined. Optical results clarified that the coating layer copper lithium silicate/zirconium (CLS/ZrO2) NPs on Kevlar surface produces a remarkable contribution to its UV-Vis absorbance properties and creates high energy is absorbed from the UV- light. FTIRimages enhancement in comparison with Kevlar, while new peaks are presented Si-O-Si and its intensity increasing with ZrO2 doping percent at FTIR charts. SEM showed a homogeneous dispersity of CLS/ZRO2NPson Kevlar surface appears as this layer at low concentrations. Kevlar showed ascending UPF values with increasing ZrO2 percent inside CLS/ZrO2NPs. Mechanical properties behaviors directly proportional to early percent’s of CLS/ZrO2NPs doping and then decreases, which means it has not monotonic behavior. The obtained results will assist textile developers to use the new modified Kevlar at different applications as protective clothing.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    de Marco BA, Rechelo BS, Tótoli EG, Kogawa AC, Salgado HRN (2018) Evolution of green chemistry and its multidimensional impacts: a review. Saudi Pharm J 27:1–8. https://doi.org/10.1016/j.jsps.2018.07.011

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Rabbi MF, Chalivendra V, Kim Y (2018) Dynamic constitutive response of novel auxetic Kevlar®/epoxy composites. Compos Struct 195:1–13. https://doi.org/10.1016/j.compstruct.2018.04.056

    Article  Google Scholar 

  3. 3.

    Khodadadi A, Liaghat G, Bahramian AR, Ahmadi H, Anani Y, Asemani S, Razmkhah O (2019) High velocity impact behavior of Kevlar/rubber and Kevlar/epoxy composites: a comparative study. Compos Struct 216:159–167. https://doi.org/10.1016/j.compstruct.2019.02.080

    Article  Google Scholar 

  4. 4.

    Kawaguchi T (1959) The dynamic mechanical properties of nylons. J Appl Polym Sci 2:56–61. https://doi.org/10.1002/app.1959.070020408

    CAS  Article  Google Scholar 

  5. 5.

    McKeen LW (2013) 7 - polyamides nylons. In: LW MK (ed) The effect of UV light and weather on plastics and elastomers3rd edn. William Andrew Publishing, Boston, pp 163–191

    Chapter  Google Scholar 

  6. 6.

    Thanki PN, Singh RP (1998) Photo-oxidative degradation of nylon 66 under accelerated weathering. Polymer (Guildf) 39:6363–6367. https://doi.org/10.1016/S0032-3861(97)10390-1

    CAS  Article  Google Scholar 

  7. 7.

    Hebeish AA, Ramadan MA, Montaser AS, Farag AM (2014) Preparation, characterization and antibacterial activity of chitosan-g-poly acrylonitrile/silver nanocomposite. Int J Biol Macromol 68:178–184. https://doi.org/10.1016/j.ijbiomac.2014.04.028

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Montaser AS, Ramadan MA, Hebeish AA (2016) Facile way for synthesis silver nanoparticles for obtaining antibacterial textile fabrics. J Appl Pharm Sci 6:139–144. https://doi.org/10.7324/JAPS.2016.60624

  9. 9.

    Ramadan MA, Nassar SH, Montaser AS et al (2016) Synthesis of nano-sized zinc oxide and its application for cellulosic textiles. Egypt J Chem 59:523–535

  10. 10.

    Rehan M, Zaghloul S, Mahmoud FA, Montaser AS, Hebeish A (2017) Design of multi-functional cotton gauze with antimicrobial and drug delivery properties. Mater Sci Eng C 80:29–37. https://doi.org/10.1016/j.msec.2017.05.093

    CAS  Article  Google Scholar 

  11. 11.

    Montaser AS, Abdel-Mohsen AM, Ramadan MA, Sleem AA, Sahffie NM, Jancar J, Hebeish A (2016) Preparation and characterization of alginate/silver/nicotinamide nanocomposites for treating diabetic wounds. Int J Biol Macromol 92:739–747. https://doi.org/10.1016/j.ijbiomac.2016.07.050

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Lakshmanan A, Chakraborty S (2017) Coating of silver nanoparticles on jute fibre by in situ synthesis. Cellulose 24:1563–1577. https://doi.org/10.1007/s10570-017-1204-2

    CAS  Article  Google Scholar 

  13. 13.

    Lysun NV, Anisimov VM, Anisimova OM, Krichevskii GY (1988) Mechanism of the stabilizing action of disperse dyes on the photodegradation of polyamide. Polym Sci USSR 30:43–48. https://doi.org/10.1016/0032-3950(88)90252-3

    Article  Google Scholar 

  14. 14.

    Brinker CJ, Scherer GW (1990) CHAPTER 2 - hydrolysis and condensation I: nonsilicates. In: Brinker CJ, Scherer GW (eds) Sol-Gel Science. Academic Press, San Diego, pp 20–95

    Chapter  Google Scholar 

  15. 15.

    Elnahrawy AM, Ali AI (2014) Influence of Reaction Conditions on Sol-Gel Process Producing SiO2 and SiO2 -P2O5 Gel and Glass. J Glas Ceram. https://doi.org/10.4236/njgc.2014.42006

  16. 16.

    Brinker CJ, Scherer GW (1990) CHAPTER 3 - hydrolysis and condensation II: silicates. In: Brinker CJ, Scherer GW (eds) Sol-Gel Science. Academic Press, San Diego, pp 96–233

    Chapter  Google Scholar 

  17. 17.

    Elnahrawy A, Soliman AA, Sakr EMM, El Attar HA (2018) Sodium-cobalt ferrite nanostructure study: sol-gel synthesis, characterization, and magnetic properties. J Ovonic Res 14:193–200

    CAS  Google Scholar 

  18. 18.

    Elabd M, Elhefnawy O, Elnahrawy A, Elabd A (2015) A new organic–silica based nanocomposite prepared for spectrophotometric determination of uranyl ions. RSC Adv 6:9563–9570. https://doi.org/10.1039/C5RA21401G

    CAS  Article  Google Scholar 

  19. 19.

    Li H, Liang K, Mei L, Gu S, Wang S (2001) Corrosion protection of mild steel by zirconia sol-gel coatings. J Mater Sci Lett 20:1081–1083. https://doi.org/10.1023/A:1010918224936

    CAS  Article  Google Scholar 

  20. 20.

    Rokita M, Mozgawa W, Adamczyk A (2014) Transformation of silicate gels during heat treatment in air and in argon – spectroscopic studies. J Mol Struct 1070:125–130. https://doi.org/10.1016/j.molstruc.2014.04.020

    CAS  Article  Google Scholar 

  21. 21.

    Zhu J, Yuan L, Guan Q, Liang G, Gu A (2017) A novel strategy of fabricating high performance UV-resistant aramid fibers with simultaneously improved surface activity, thermal and mechanical properties through building polydopamine and graphene oxide bi-layer coatings. Chem Eng J 310:134–147. https://doi.org/10.1016/j.cej.2016.10.099

    CAS  Article  Google Scholar 

  22. 22.

    El-Nahrawy AM, Ali AI, Hammad ABA, Youssef AM (2016) Influences of Ag-NPs doping chitosan/calcium silicate nanocomposites for optical and antibacterial activity. Int J Biol Macromol 93:267–275. https://doi.org/10.1016/j.ijbiomac.2016.08.045

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Zhou L, Yuan L, Guan Q, Gu A, Liang G (2017) Building unique surface structure on aramid fibers through a green layer-by-layer self-assembly technique to develop new high performance fibers with greatly improved surface activity, thermal resistance, mechanical properties and UV resistance. Appl Surf Sci 411:34–45. https://doi.org/10.1016/j.apsusc.2017.03.024

    CAS  Article  Google Scholar 

  24. 24.

    Wu X, Yin S, Dong Q, Guo C, Li H, Kimura T, Sato T (2013) Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method. Appl Catal B Environ 142–143:450–457. https://doi.org/10.1016/j.apcatb.2013.05.052

    CAS  Article  Google Scholar 

  25. 25.

    Cheng Z, Hong D, Dai Y, Jiang C, Meng C, Luo L, Liu X (2018) Highly improved Uv resistance and composite interfacial properties of aramid fiber via iron (III) coordination. Appl Surf Sci 434:473–480. https://doi.org/10.1016/j.apsusc.2017.10.227

    CAS  Article  Google Scholar 

  26. 26.

    Ibrahim NA, El-Gamal AR, Gouda M, Mahrous F (2010) A new approach for natural dyeing and functional finishing of cotton cellulose. Carbohydr Polym 82:1205–1211. https://doi.org/10.1016/j.carbpol.2010.06.054

    CAS  Article  Google Scholar 

  27. 27.

    Ibrahim NA, Eid BM, Khalil HM, Almetwally AA (2018) A new approach for durable multifunctional coating of PET fabric. Appl Surf Sci 448:95–103. https://doi.org/10.1016/j.apsusc.2018.04.022

    CAS  Article  Google Scholar 

  28. 28.

    He Q, Cao S, Wang Y, Xuan S, Wang P, Gong X (2018) Impact resistance of shear thickening fluid/Kevlar composite treated with shear-stiffening gel. Compos A Appl Sci Manuf 106:82–90. https://doi.org/10.1016/j.compositesa.2017.12.019

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amany M. El Nahrawy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Nahrawy, A.M., Montaser, A.S., Abou Hammad, A.B. et al. Copper Lithium Silicate/ZrO2 Nanoparticles-Coated Kevlar for Improving UV-Vis Absorbance/ Protection Properties. Silicon 12, 1743–1750 (2020). https://doi.org/10.1007/s12633-019-00271-w

Download citation

Keywords

  • Kevlar
  • Copper lithium silicate (CLS)
  • Textile
  • Ultraviolet protection factor (UPF)
  • Mechanical