SILAR Controlled CdS Nanoparticles Sensitized CdO Diode Based Photodetectors

Abstract

In this research, we have produced Al/CdS nanoparticles-CdO/p-si/Al photodetetor and investigated its optical and electrical characteristics for various optoelectronic applications. The CdO thin film was covered by using sol-gel spin coating method onto the silicon, followed by CdS nanoparticles constitution by the help of SILAR technique. In order to examine the morphological and optical characteristics of fabricated photodetector, the field emission scanning electron microscopy and UV-Vis spectroscopy were utilized, and the band gap of the prepared film was determined as 2,17 eV with the help of these analyzes. The current behavior against the varying voltage values were investigated for the different intensities of solar light conditions and the significant diode parameters were computed by the use of this measurements. As a result of this computation, the barrier height value was found to be 0.49 eV while the ideality factor value was 3.2, and the photoresponse of the photodetector was measured as approximatelly 2.65 × 103. Besides, the transient photocurrent and photocapacitance charactersitics were examined for distinct light conditions. Finally, the interface states were calculated from the capacitance/conductance–voltage (C/G–V) measurements.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Sandvik P, Mi K, Shahedipour F, McClintock R, Yasan A, Kung P, Razeghi M (2001) AlxGa1-xN for solar-blind UV detectors. J Cryst Growth 231:366–370

    CAS  Article  Google Scholar 

  2. 2.

    Razeghi M, Rogalski A (1996) Semiconductor ultraviolet detectors. J Appl Phys 79:7433–7473

    CAS  Article  Google Scholar 

  3. 3.

    Jin Y, Wang J, Sun B, Blakesley JC, Greenham NC (2008) Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett 8:1649–1653

    CAS  Article  Google Scholar 

  4. 4.

    Liu M, Kim HK (2004) Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma. Appl Phys Lett 84:173–175

    CAS  Article  Google Scholar 

  5. 5.

    Yang J, Jiang Y-L, Li L-J, Muhire E, Gao M-Z (2016) High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation. Nanoscale 8:8170–8177

    CAS  Article  Google Scholar 

  6. 6.

    Djamil R, Aicha K, Souifi A, Fayçal D (2017) Effect of annealing time on the performance of tin oxide thin films ultraviolet photodetectors. Thin Solid Films 623:1–7

    CAS  Article  Google Scholar 

  7. 7.

    Reddy VR, Reddy MSP, Lakshmi BP, Kumar AA (2011) Electrical characterization of au/n-GaN metal–semiconductor and au/SiO2/n-GaN metal–insulator–semiconductor structures. J Alloys Compd 509:8001–8007

    CAS  Article  Google Scholar 

  8. 8.

    Ramamurthy M, Balaji M, Thirunavukkarasu P (2016) Characterization of jet nebulizer sprayed CdO thin films for solar cell application. Optik – Int J Light Electron Opt 127:3809–3819

  9. 9.

    Ismail RA, Al-Samarai A-ME, Mohmed SJ, Ahmed HH (2013) Characteristics of nanostructured CdO/Si heterojunction photodetector synthesized by CBD. Solid State Electron 82:115–121

    CAS  Article  Google Scholar 

  10. 10.

    Karatas S, Yakuphanoglu F (2013) Effects of illumination on electrical parameters of ag/n-CdO/p-Si diode. Mater Chem Phys 138:72–77

    CAS  Article  Google Scholar 

  11. 11.

    Chandiramouli R, Jeyaprakash BG (2013) Review of CdO thin films. Solid State Sci 16:102–110

    CAS  Article  Google Scholar 

  12. 12.

    Rajput JK, Pathak TK, Kumar V, Purohit LP (2017) Influence of sol concentration on CdO nanostructure with gas sensing application. Appl Surf Sci 409:8–16

    CAS  Article  Google Scholar 

  13. 13.

    Ortega M, Santana G, Morales-Acevedo A (2000) Optoelectronic properties of CdO/Si photodetectors. Solid State Electron 44:1765–1769

    CAS  Article  Google Scholar 

  14. 14.

    Yakuphanoglu F, Caglar M, Caglar Y, Ilican S (2010) Electrical characterization of nanocluster n-CdO/p-Si heterojunction diode. J Alloys Compd 506:188–193

    CAS  Article  Google Scholar 

  15. 15.

    Karatas S, Yakuphanoglu F (2012) Analysis of electronic parameters of nanostructure copper doped cadmium oxide/p-silicon heterojunction. J Alloys Compd 537:6–11

    CAS  Article  Google Scholar 

  16. 16.

    Farag AAM, Cavas M, Yakuphanoglu F (2012) Electrical performance and interface states studies of undoped and Zn-doped CdO/p-Si heterojunction devices. Mater Chem Phys 132:550–558

    CAS  Article  Google Scholar 

  17. 17.

    Sağlam M, Ateş A, Yıldırım MA, Güzeldir B, Astam A (2010) Temperature dependent current–voltage characteristics of the cd/CdO/n–Si/au–Sb structure. Curr Appl Phys 10:513–520

    Article  Google Scholar 

  18. 18.

    Zhang Q, Jie J, Diao S, Shao Z, Zhang Q, Wang L, Deng W, Hu W, Xia H, Yuan X, Lee S-T (2015) Solution-processed graphene quantum dot deep-UV photodetectors. ACS Nano 9:1561–1570

    CAS  Article  Google Scholar 

  19. 19.

    Zhang F, Niu S, Guo W, Zhu G, Liu Y, Zhang X, Wang ZL (2013) Piezo-phototronic effect enhanced visible/UV photodetector of a carbon-fiber/ZnO-CdS double-Shell microwire. ACS Nano 7:4537–4544

    CAS  Article  Google Scholar 

  20. 20.

    Jin Z, Gao L, Zhou Q, Wang J (2014) High-performance flexible ultraviolet photoconductors based on solution-processed ultrathin ZnO/au nanoparticle composite films. Sci Rep 4:4268

    Article  Google Scholar 

  21. 21.

    Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. John Wiley & Sons, New York

  22. 22.

    Stuart HR, Hall DG (1998) Island size effects in nanoparticle-enhanced photodetectors. Appl Phys Lett 73:3815–3817

    CAS  Article  Google Scholar 

  23. 23.

    Pei J, Jiang D, Zhao M, Duan Q, Liu R, Sun L, Guo Z, Hou J, Qin J, Li B, Zhang G (2016) Controlled enhancement range of the responsivity in ZnO ultraviolet photodetectors by Pt nanoparticles. Appl Surf Sci 389:1056–1061

    CAS  Article  Google Scholar 

  24. 24.

    Li L, Gu L, Lou Z, Fan Z, Shen G (2017) ZnO quantum dot decorated Zn2SnO4 nanowire heterojunction photodetectors with drastic performance enhancement and flexible ultraviolet image sensors. ACS Nano 11:4067–4076

    CAS  Article  Google Scholar 

  25. 25.

    Buddha Deka B, Abha M (2016) Conjugated assembly of colloidal zinc oxide quantum dots and multiwalled carbon nanotubes for an excellent photosensitive ultraviolet photodetector. Nanotechnology 27:355204

    Article  Google Scholar 

  26. 26.

    Soylu M, Al-Ghamdi AA, El-Tantawy E, Farooq WA, Yakuphanoglu F (2016) Low leakage current of CdSe quantum dots/Si composite structure and its performance for photodiode and solar cell. Ceram Int 42:14949–14955

    CAS  Article  Google Scholar 

  27. 27.

    Ma Y-J, Zhang Y-G, Gu Y, Chen X-Y, Wang P, Juang B-C, Farrell A, Liang B-L, Huffaker DL, Shi Y-H, Ji W-Y, Du B, Xi S-P, Tang H-J, Fang J-X (2017) Enhanced carrier multiplication in InAs quantum dots for bulk avalanche photodetector applications. Adv Opt Mater 5:1601023

  28. 28.

    Nicollian EH, Goetzberger A (1967) The Si-SiO2 Interface-electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst Tech J 46:1055–1133

    CAS  Article  Google Scholar 

  29. 29.

    Ejderha K, Karabulut A, Turkan N, Turut A (2016) The characteristic parameters of Ni/n-6H-SiC devices over a wide measurement temperature range. Silicon 9:395–401

    Article  Google Scholar 

  30. 30.

    Turut A, Coșkun M, Coșkun FM, Polat O, Durmuș Z, Çağlar M, Efeoğlu H (2019) The current-voltage characteristics of the ferroelectric p-YMnO3 thin film/bulk p-Si heterojunction over a broad measurement temperature range. J Alloys Compd 782:566–575

    CAS  Article  Google Scholar 

  31. 31.

    Sze SM (1981) Physics of semiconductor devices2nd edn. John Wiley&Sons, New York

  32. 32.

    Rhoderick EH, Williams RH (1988) Metal-semiconductor contacts2nd edn. Clerandon, Oxford

  33. 33.

    Paper O, Koralay H, Akgu KB, Tug N (2016) Analysis of inhomogeneous device parameters using current–voltage characteristics of identically prepared lateral Schottky structures. Indian J Phys 90:43–48

    Article  Google Scholar 

  34. 34.

    Cicek O, Tecimer HU, Tan SO, Tecimer H, Altindal IU (2016) Evaluation of electrical and photovoltaic behaviours as comparative of au/n-GaAs (MS) diodes with and without pure and graphene (gr)-doped polyvinyl alcohol (PVA) interfacial layer under dark and illuminated conditions. Compos Part B Eng 98:260–268

  35. 35.

    Lee D-K, Ko H, Cho Y (2015) Single Si submicron wire photodetector fabricated by simple wet etching process. Mater Lett 160:562–565

    CAS  Article  Google Scholar 

  36. 36.

    Soylu M, Cavas M, Al-Ghamdi AA, Gafer ZH, El-Tantawy F, Yakuphanoglu F (2014) Photoelectrical characterization of a new generation diode having GaFeO3 interlayer. Sol Energy Mater Sol Cells 124:180–185

    CAS  Article  Google Scholar 

  37. 37.

    Yakuphanoglu F (2010) Electrical and photovoltaic properties of cobalt doped zinc oxide nanofiber/n-silicon diode. J Alloys Compd 494:451–455

  38. 38.

    Bube RH (1960) Photoconductivity of Solids. Wiley, New York

    Google Scholar 

  39. 39.

    Elsayed IA, Çavaş M, Gupta R, Fahmy T, Al-Ghamdi AA, Yakuphanoglu F (2015) Photoconducting and photocapacitance properties of Al/p-CuNiO2-on-p-Si isotype heterojunction photodiode. J Alloys Compd 638:166–171

    CAS  Article  Google Scholar 

  40. 40.

    Rose A (1963) Concepts in Photoconductivity. Interscience, New York

    Google Scholar 

  41. 41.

    Yakuphanoglu F, Darkwa KM, Al-Ghamdi AA, Gupta RK, Farooq WA (2016) Novel organic doped inorganic photosensors. Microelectron Eng 160:27–33

    CAS  Article  Google Scholar 

  42. 42.

    Jie JS, Zhang WJ, Jiang Y, Meng XM, Li YQ, Lee ST (2006) Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett 6:1887–1892

    CAS  Article  Google Scholar 

  43. 43.

    Karabulut A, Orak İ, Türüt A (2018) The photovoltaic impact of atomic layer deposited TiO2interfacial layer on Si-based photodiodes. Solid State Electron 144:39–48

    CAS  Article  Google Scholar 

  44. 44.

    Duman S, Gürbulak B, Dogan S, Türüt A (2011) Capacitance and conductance–frequency characteristics of au–Sb/p-GaSe:Gd Schottky barrier diode. Vacuum 85:798–801

  45. 45.

    Singh R, Narula AK (1997) Junction properties of aluminum/polypyrrole (polypyrrole derivatives) Schottky diodes. Appl Phys Lett 71:2845–2847

    CAS  Article  Google Scholar 

  46. 46.

    Nicollian EH, Goetzberger A, Lopez AD (1969) Expedient method of obtaining interface state properties from MIS conductance measurements. Solid State Electron 12:937–944

    Article  Google Scholar 

  47. 47.

    Gozeh BA, Karabulut A, Yildiz A, Yakuphanoglu F (2018) Solar light responsive ZnO nanoparticles adjusted using cd and La co-dopant photodetector. J Alloys Compd 732:16–24

  48. 48.

    Nicollian EH, Brews JR (1982) Metal-oxide-semiconductor physics and technology. John Wiley & Sons, New York

  49. 49.

    Hill WA, Coleman CC (1980) A single-frequency approximation for interface-state density determination. Solid State Electron 23:987–993

    CAS  Article  Google Scholar 

  50. 50.

    Taşçıoğlu İ, Soylu M, Altındal Ş, Al-Ghamdi AA, Yakuphanoglu F (2012) Effects of interface states and series resistance on electrical properties of Al/nanostructure CdO/p-GaAs diode. J Alloys Compd 541:462–467

    Article  Google Scholar 

  51. 51.

    Nicollian EH, Brews JR (1982) MOS (metal oxide semiconductor) physics and technology. Wiley, New York

  52. 52.

    Pathak TK, Rajput JK, Kumar V, Purohit LP, Swart HC, Kroon RE (2017) Transparent conducting ZnO-CdO mixed oxide thin films grown by the sol-gel method. J Colloid Interface Sci 487:378–387

  53. 53.

    Turut A, Karabulut A, Ejderha K, Bıyıklı N (2015) Capacitance–conductance–current–voltage characteristics of atomic layer deposited au/Ti/Al2O3/n-GaAs MIS structures. Mater Sci Semicond Process 39:400–407

Download references

Acknowledgments

This work was supported by Scientific Research Projects Foundation (BAP) of Kahramanmaras¸ Sütçü Imam University under Grant No. 2017/1e72 D.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bestoon Anwer Gozeh or Abdulkerim Karabulut.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gozeh, B.A., Karabulut, A., Yildiz, A. et al. SILAR Controlled CdS Nanoparticles Sensitized CdO Diode Based Photodetectors. Silicon 12, 1673–1681 (2020). https://doi.org/10.1007/s12633-019-00266-7

Download citation

Keywords

  • Optical characteristics
  • CdS nanoparticles
  • CdO thin film
  • Electrical characteristics
  • Sol-gel method
  • SILAR method