Preparation and Characterization of Acetic Acid-Functionalized Fe3O4@SiO2 Nanoparticles as an Efficient Nanocatalyst for the Synthesis of Nitrones in Water

Abstract

Magnetic materials grafted with acetic acid (Fe3O4@SiO2COOH MNPs) were successfully prepared from the incorporation of bromoacetic acid as a functional group on the surface of magnetite silica nanoparticles. The catalyst has been characterized by Fourier transform infrared spectroscopy, X-ray diffraction, elemental analysis, energy-dispersive X-ray spectroscopy, thermogravimetric analysis, scanning electron microscopy and transition electron microscopy. Next, the efficiency of this acid catalyst was examined for the synthesis of the nitrones from diaminoglyoxime in the water at room temperature. The present approach provides several advantages such as environmentally benign, excellent yields, straightforward, short reaction times, good recyclability of catalyst, cost-effective and facile catalyst separation for the preparation of nitrones compounds as an important privileged medicinal scaffold.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Min BK, Friend CM (2007). Chem Rev 107:2709–2724

    CAS  Article  Google Scholar 

  2. 2.

    Taghavi Fardood S, Ramazani A, Azimzadeh Asiabi P, Bigdeli Fard Y, Ebadzadeha B (2017). Asian J Green Chem 1:34–40

    Article  Google Scholar 

  3. 3.

    Rezayati S, Abbasi Z, Nezhad ER, Hajinasiri R, Farrokhnia A (2016). Res Chem Intermed 42:7597–7609

    CAS  Article  Google Scholar 

  4. 4.

    Mohammadi B, Salmani L (2018). Asian J Green Chem 2:51–58

    Article  Google Scholar 

  5. 5.

    Rezayati S, Jafroudi MT, Nezhad ER, Hajinasiri R, Abbaspour S (2016). Res Chem Intermed 42:5887–5898

    CAS  Article  Google Scholar 

  6. 6.

    Zhang K, Chen H, Chen X, Chen Z, Cui Z, Yang B (2003). Macromol Mater Eng 288:380–385

    CAS  Article  Google Scholar 

  7. 7.

    Mohammadi R, Sajjadi A (2019). J Med Chem Sci 2:55–58

    Google Scholar 

  8. 8.

    Moghimi A, Khanmiri RH, Shaabani A, Hamadani H (2013). J Iran Chem Soc 10:929–936

    CAS  Article  Google Scholar 

  9. 9.

    Moghimi A, Khanmiri RH, Omrani I, Shaabani A (2013). Tetrahedron Lett 54:3956–3959

    CAS  Article  Google Scholar 

  10. 10.

    Khanmiri RH, Moghimi A, Shaabani A, Valizadeh H, Ng SW (2014). Mol Divers 18:769–776

    CAS  Article  Google Scholar 

  11. 11.

    Banan A, Valizadeh H, Heydari A, Moghimi A (2018). Appl Organomet Chem 32:e3944

    Article  Google Scholar 

  12. 12.

    Hassanpour A, Khanmiri RH, Abolhasani J (2015). Synth Commun 45:727–733

    CAS  Article  Google Scholar 

  13. 13.

    Hassanpour A, Hosseinzadeh-Khanmiri R, Babazadeh M, Edjlali L (2016). Res Chem Intermed 42:2221–2231

    CAS  Article  Google Scholar 

  14. 14.

    Black DSC, Crozier RF, Davis VC (1975). Synthesis 1975:205–221

    Article  Google Scholar 

  15. 15.

    Dondas HA, Cummins JE, Grigg R, Thornton-Pett M (2001). Tetrahedron 57:7951–7964

    Article  Google Scholar 

  16. 16.

    Ravi Kumar KR, Mallesha H, Rangappa KS (2003). Eur J Med Chem 38:613–619

    CAS  Article  Google Scholar 

  17. 17.

    Gothelf KV, Jørgensen KA (1998). Chem Rev 98:863–910

    CAS  Article  Google Scholar 

  18. 18.

    Han Y, Tuccio B, Lauricella R, Rockenbauer A, Zweier JL, Villamena FA (2008). J Org Chem 73:2533–2541

    CAS  Article  Google Scholar 

  19. 19.

    Edjlali L, Khanamiri RH (2016). Monatsh Chem 147:1221–1225

    CAS  Article  Google Scholar 

  20. 20.

    Vessally E, Hosseinzadeh-Khanmiri R, Ghorbani-Kalhor E, Es' haghi M, Ejlali L (2017). Appl Organomet Chem 31:e3729

    Article  Google Scholar 

  21. 21.

    Soleimani E, Naderi Namivandi M, Sepahvand H (2017). Appl Organomet Chem 31:e3566

    Article  Google Scholar 

  22. 22.

    Shaabani A, Sepahvand H, Hooshmand SE, Borjian Boroujeni M (2016). Appl Organomet Chem 30:414–421

    CAS  Article  Google Scholar 

  23. 23.

    Fei, X.; Kong, W.; Chen, X.; Jiang, X.; Shao, Z.; Lee, J. Y.; ACS Publications, 2018

  24. 24.

    Garrido-Ramírez E, Theng B, Mora M (2010). Appl Clay Sci 47:182–192

    Article  Google Scholar 

  25. 25.

    Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008). J Am Chem Soc 130:28–29

    CAS  Article  Google Scholar 

  26. 26.

    Sun C, Lee JS, Zhang M (2008). Adv Drug Deliv Rev 60:1252–1265

    CAS  Article  Google Scholar 

  27. 27.

    Olsvik O, Popovic T, Skjerve E, Cudjoe KS, Hornes E, Ugelstad J, Uhlen M (1994). Clin Microbiol Rev 7:43–54

    CAS  Article  Google Scholar 

  28. 28.

    Abu-Reziq R, Alper H, Wang D, Post ML (2006). J Am Chem Soc 128:5279–5282

    CAS  Article  Google Scholar 

  29. 29.

    Hara T, Kaneta T, Mori K, Mitsudome T, Mizugaki T, Ebitani K, Kaneda K (2007). Green Chem 9:1246–1251

    CAS  Article  Google Scholar 

  30. 30.

    Jin MJ, Lee DH (2010). Angew Chem 122:1137–1140

    Article  Google Scholar 

  31. 31.

    Liu YH, Deng J, Gao JW, Zhang ZH (2012). Adv Synth Catal 354:441–447

    CAS  Article  Google Scholar 

  32. 32.

    Baig RN, Varma RS (2013). Green Chem 15:398–417

    Article  Google Scholar 

  33. 33.

    Sreedhar B, Kumar AS, Reddy PS (2010). Tetrahedron Lett 51:1891–1895

    CAS  Article  Google Scholar 

  34. 34.

    Polshettiwar V, Varma RS (2009). Chem Eur J 15:1582–1586

    CAS  Article  Google Scholar 

  35. 35.

    Hassani H, Zakerinasab B, Nasseri M, Shavakandi M (2016). RSC Adv 6:17560–17566

    CAS  Article  Google Scholar 

  36. 36.

    Seifi Mansour S, Ezzatzadeh E, Safarkar R (2018) Asian Journal of Green Chemistry

  37. 37.

    Wang J, Zheng S, Shao Y, Liu J, Xu Z, Zhu D (2010). J Colloid Interface Sci 349:293–299

    CAS  Article  Google Scholar 

  38. 38.

    Li B, Qiao Y, An J, Shen L, Ma Q, Guo Y (2018) Micro & Nano Letters

Download references

Acknowledgments

The authors would like to thank Tabriz Branch, Islamic Azad University for the financial support of this research, which is based on a research project contract.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gholam Hossein Shahverdizadeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5924 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shendy, S.A., Shahverdizadeh, G.H., Babazadeh, M. et al. Preparation and Characterization of Acetic Acid-Functionalized Fe3O4@SiO2 Nanoparticles as an Efficient Nanocatalyst for the Synthesis of Nitrones in Water. Silicon 12, 1735–1742 (2020). https://doi.org/10.1007/s12633-019-00252-z

Download citation

Keywords

  • Nanocatalyst
  • Fe3O4@SiO2COOH
  • Nitrones
  • Diaminoglyoxim
  • Condensation