Ternary nanocomposite of SiO2/Fe3O4/Multi-Walled Carbon Nanotubes for Efficient Adsorption of Malachite Green: Response Surface Modeling, Equilibrium Isotherms and Kinetics


In the work, synthesis and application of the ternary nanocomposite of SiO2/Fe3O4/multi-walled carbon nanotubes (SFCNT) for adsorptive removal of malachite green (MG) from aqueous solutions are reported. A Box-Behnken experimental design with the variables of SFCNT dosage, contact time, pH and ionic strength was used to optimize the effects of the variables on the decolourization process. The results were satisfactorily fitted to a quadratic response surface model with R2=0.9735 and F=36.78 which predicted the optimum conditions of operation (SFCNT dosage of 0.192 g L-1, contact time of 25.1 minutes, pH of 6.26, and 0.03 mol L-1 ionic strength) and the removal efficiency of 98.42±0.18% was achieved. The adsorption data obtained for different MG concentrations showed good agreement with the pseudo-second order kinetic model (R2>0.99). The data were also fitted to different isotherms (Langmuir, Tempkin, Harkins-Jura, Jovanovic, Halsey and Freundlich) and the results of error analyses showed that Freundlich isotherm was the best model to describe the dye-nanocomposite adsorption system.

This is a preview of subscription content, log in to check access.

Change history

  • 19 December 2019

    After a more careful reconsideration of the article (Fariba Safa<Superscript>*</Superscript>, Yousef Alinezhad, <Emphasis Type="Italic">Silicon</Emphasis>, doi:<ExternalRef><RefSource>https://doi.org/10.1007/s12633-019-00251-0</RefSource><RefTarget Address="10.1007/s12633-019-00251-0" TargetType="DOI"/></ExternalRef>), it was found that the words: ″Deviation of ″ are missing from the last sentence of section 3.7. The issue is fixed via the present Erratum


  1. 1.

    Bhushan B (2010) Springer Handbook of nanotechnology. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  2. 2.

    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem. Rev. 106:1105–1136

    CAS  PubMed  Google Scholar 

  3. 3.

    Tang WW, Zeng GM, Gong JL, Liu Y, Wang XY, Liu YY, Liu ZF, Chen L, Zhang XR, Tu D (2012) Simultaneous adsorption of atrazine and Cu (II) from wastewater by magnetic multi-walled carbon nanotube. Chem. Eng. J. 211:470–478

    Google Scholar 

  4. 4.

    Maggini L, Raquez JM, Marega R, Jensen Ahrens J, Pineux F, Meyer F, Dubois P, Bonifazi D (2013) Magnetic poly(vinylpyridine)-coated carbon nanotubes: An efficient supramolecular tool for wastewater purification. ChemSusChem 6:367–373

    CAS  PubMed  Google Scholar 

  5. 5.

    Speltini A, Merli D, Profumo A (2013) Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: A review. Anal. Chim. Acta 783:1–16

    CAS  PubMed  Google Scholar 

  6. 6.

    Karimi R, Yousefi F, Ghaedi M, Dashtian K (2016) Back propagation artificial neural network and central composite design modeling of operational parameter impact for sunset yellow and azur (II) adsorption onto MWCNTS and MWCNTS-Pd-NPs: Isotherm and kinetic study. Chemom. Intell. Lab. Syst. 159:127–137

    CAS  Google Scholar 

  7. 7.

    Ferreira GMD, Ferreira GMD, Hespanhol MC, Rezende JP, Pires ACS, Gurgel LVA, Silva LHM (2017) Adsorption of red azo dyes on multi-walled carbon nanotubes and activated carbon: A thermodynamic study. Colloids Surf. A: Physicochem. Eng. Asp. 529:531–540

    CAS  Google Scholar 

  8. 8.

    Zare K, Sadegh H, Shahryari-ghoshekandi R, Maazinejad B, Ali V, Tyagie I, Agarwal S, Gupta VK (2015) Enhanced removal of toxic Congo red dye using multi-walled carbon nanotubes: Kinetic, equilibrium studies and its comparison with other adsorbents. J. Mol. Liq. 212:266–271

    CAS  Google Scholar 

  9. 9.

    Wang JP, Yang HC (2010) Adsorption of phenol and basic dye on carbon nanotubes/carbon fabric composites from aqueous solution. Sep. Sci. Technol. 46:340–348

    Google Scholar 

  10. 10.

    Xiao DL, Li H, He H, Lin R, Zuo PL (2014) Adsorption performance of carboxylated multi-wall carbon nanotube-Fe3O4 magnetic hybrids for Cu(II) in water. New Carbon Mater. 29:15–25

    CAS  Google Scholar 

  11. 11.

    Luo X, Zhang L (2009) High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon. J. Hazard. Mater. 171:340–347

    CAS  PubMed  Google Scholar 

  12. 12.

    Li X, Zhu G, Luo Y, Yuan B, Feng Y (2013) Synthesis and applications of functionalized magnetic materials in sample preparation. Trends Anal. Chem. 45:233–247

    CAS  Google Scholar 

  13. 13.

    Alimohammadi V, Sedighi M, Jabbari E (2017) Experimental study on efficient removal of total iron from wastewater using magnetic-modified multi-walled carbon nanotubes. Ecol. Eng. 102:90–97

    Google Scholar 

  14. 14.

    Sadegh H, Ali GAM, Makhlouf ASH, Chong KF, Alharbi NS, Agarwal S, Gupta VK (2018) MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J. Mol. Liq 258:345–353

    CAS  Google Scholar 

  15. 15.

    Suwattanamala A, Bandis N, Tedsree K, Issroc C (2017) Synthesis, characterization and adsorption properties of Fe3O4/MWCNT magnetic nanocomposites. Mater. Today Proc. 4:6567–6575

    Google Scholar 

  16. 16.

    Kerke Ö, Bayazit ŞS (2014) Magnetite decorated multi-walled carbon nanotubes for removal of toxic dyes from aqueous solutions. J. Nanopart. Res. 16:2431

    Google Scholar 

  17. 17.

    Fazelirad H, Ranjbar M, Taher MA, Sargazi G (2015) Preparation of magnetic multi-walled carbon nanotubes for an efficient adsorption and spectrophotometric determination of amoxicillin. J. Ind. Eng. Chem. 21:889–892

    CAS  Google Scholar 

  18. 18.

    Chung MH, Chen LM, Wang WH, Lai Y, Yang PF, Lin HP (2014) Effects of mesoporous silica coated multi-wall carbon nanotubes on the mechanical and thermal properties of epoxy nanocomposites. J. Taiwan Inst. Chem. Eng. 45:2813–2819

    CAS  Google Scholar 

  19. 19.

    Sodipo BK, Aziz AA (2013) Sonochemical synthesis of silica coated superpara-magnetic iron oxide nanoparticles. Mater. Sci. Forum 756:74–79

    Google Scholar 

  20. 20.

    Gawande MB, Monga Y, Zboril R, Sharma RK (2015) Silica-decorated magnetic nanocomposites for catalytic applications. Coord. Chem. Rev. 288:118–143

    CAS  Google Scholar 

  21. 21.

    Kayode SB, Aziz AA (2014) An in-situ functionalization of decanethiol monolayer on thin silica coated superparamagnetic iron oxide nanoparticles synthesized by non-seeded process. Adv. Mater. Res. 1024:300–303

    Google Scholar 

  22. 22.

    Zhu J, Wei S, Gu H, Rapole SB, Wang Q, Luo Z, Haldolaarachchige N, Young DP, Guo Z (2011) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ. Sci. Technol. 46:977–985

    PubMed  Google Scholar 

  23. 23.

    Heidari H, Razmi H, Jouyban A (2012) Preparation and characterization of ceramic/ carbon coated Fe3O4 magnetic nanoparticle nanocomposite as a solid-phase microextraction adsorbent. J. Chromatogr. A 1245:1–7

    CAS  PubMed  Google Scholar 

  24. 24.

    Peng X, Wang Y, Tang X, Liu W (2011) Functionalized magnetic core–shell Fe3O4@SiO2 nanoparticles as selectivity-enhanced chemosensor for Hg(II). Dyes Pigments 91:26–32

    CAS  Google Scholar 

  25. 25.

    Box GEP, Draper NR (1987) Empirical model-building and response surfaces. Wiley, Minnesota

    Google Scholar 

  26. 26.

    Kleijnen JPC (2015) Response surface methodology, Handbook of simulation optimization. Springer, New York

    Google Scholar 

  27. 27.

    Bandari F, Safa F, Shariati S (2015) Application of Response Surface Method for Optimization of Adsorptive Removal of Eriochrome Black T Using Magnetic Multi-Wall Carbon Nanotube Nanocomposite. Arab. J. Sci. Eng. 40:3363–3372

    CAS  Google Scholar 

  28. 28.

    Ehyaee M, Safa F, Shariati S (2017) Magnetic Nanocomposite of Multi-walled Carbon Nanotube as Effective Adsorbent for Methyl Violet Removal from Aqueous Solutions: Response Surface Modeling and Kinetic Study. Korean J. Chem. Eng. 34:1051–1061

    CAS  Google Scholar 

  29. 29.

    Tavakoli M, Safa F, Abedinzadeh N (2019) Binary nanocomposite of Fe3O4/MWCNTs for adsorption of Reactive Violet 2: Taguchi design, kinetics and equilibrium isotherms, Fullerenes. Nanotubes and Carbon Nanostructures 27(4):305–316

    CAS  Google Scholar 

  30. 30.

    Gong R, Jin Y, Chenc F, Chenb J, Liu Z (2006) Enhanced malachite green removal from aqueous solution by citric acid modified rice straw. J. Hazard. Mater. 137:865–870

    CAS  PubMed  Google Scholar 

  31. 31.

    Mitrowska K, Posyniak A (2004) Determination of malachite green and its metabolite, leucomalachite green, in fish muscle by liquid chromatography. Bull. Vet. Inst. Pulawy 48:173–176

    Google Scholar 

  32. 32.

    Petcharoen K, Sirivat A (2012) Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 177:421–427

    CAS  Google Scholar 

  33. 33.

    Chen J, Zhu X (2015) Ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles for the separation/analysis of linuron in food samples. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 137:456–462

    CAS  Google Scholar 

  34. 34.

    Box GEP, Hunter JS, Hunter WG (2005) Statistics for experiments2nd edn. Wiley Interscience, New York

    Google Scholar 

  35. 35.

    German-Heins J, Flury M (2000) Sorption of Brilliant Blue FCF in soils as affected by pH and ionic strength. Geoderma 97:87–101

    CAS  Google Scholar 

  36. 36.

    An Y, Yang L, Hou J, Liu ZY, Peng BH (2014) Synthesis and characterization of carbon nanotubes-treated Ag@TiO2 core–shell nanocomposites with highly enhanced photocatalytic performance. Opt. Mater. 36:1390–1395

    CAS  Google Scholar 

  37. 37.

    Goyanes S, Rubiolo GR, Salazar A, Jimeno A, Corcuera MA, Mondragon I (2007) Carboxylation treatment of multi-walled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diamond Relat. Mater. 16:412–417

    CAS  Google Scholar 

  38. 38.

    Waldron RD (1955) Infrared Spectra of ferrites. Phys. Rev. 99:1727–1735

    CAS  Google Scholar 

  39. 39.

    Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J. Hazard. Mater. 171:551–562

    CAS  PubMed  Google Scholar 

  40. 40.

    Qu S, Huang F, Yu S, Chen G, Kong J (2008) Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J. Hazard. Mater. 160:643–647

    CAS  PubMed  Google Scholar 

  41. 41.

    Pillay K, Cukrowska EM, Coville NJ (2009) Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J. Hazard. Mater. 166:1067–1075

    CAS  PubMed  Google Scholar 

  42. 42.

    Lagergren S (1898) About the theory of so called adsorption of soluble substances. Ksver Veterskapsakad Handl. 24:1–6

    Google Scholar 

  43. 43.

    Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem. 34:451–465

    CAS  Google Scholar 

  44. 44.

    Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89:31–60

    Google Scholar 

  45. 45.

    Kannan K, Sundaram MM, Sundaram (2001) Kinetics and mechanism of removal of Methylene Blue by adsorption on various carbons–A comparative study. Dyes Pigm. 51:25–40

    CAS  Google Scholar 

  46. 46.

    Zhang Z, Zhang Z, Fernandez Y, Menendez JA, Niu H, Peng J, Zhang L, Guo S (2010) Adsorption isotherms and kinetics of methylene blue on a low-cost adsorbent recovered from a spent catalyst of vinyl acetate synthesis. Appl. Surf. Sci. 256:2569–2576

    CAS  Google Scholar 

  47. 47.

    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc 40:1361–1403

    CAS  Google Scholar 

  48. 48.

    Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Eng. Chem. Fundam. 5:212–223

    CAS  Google Scholar 

  49. 49.

    Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochimica USSR 12:327–356

    Google Scholar 

  50. 50.

    Harkins WD, Jura EJ (1944) The decrease of free surface energy as a basis for the development of equations for adsorption isotherms; and the existance of two condensed phases in films on solids. J. Chem. Phys. 12:112–113

    CAS  Google Scholar 

  51. 51.

    Jovanovic DS (1969) Physical adsorption of gases. Colloid-Z.Z Polym. 235:1214–1225

    CAS  Google Scholar 

  52. 52.

    Halsey G (1948) Physical adsorption on non-uniform surfaces. J. Chem. Phys. 16:931–937

    CAS  Google Scholar 

  53. 53.

    Freundlich HZ (1906) Over the adsorption in solution. J. Phys. Chem. 57:385–471

    CAS  Google Scholar 

  54. 54.

    Silva SM, Sampaio KA, Ceriani R, Verbe R, Stevens C, De Greyt W, Meirelles AJA (2013) Adsorption of carotenes and phosphorus from palm oil onto acid activated bleaching earth: equilibrium, kinetics and thermodynamics. J. Food Eng. 118:341–349

    CAS  Google Scholar 

  55. 55.

    Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156:2–10

    CAS  Google Scholar 

  56. 56.

    Treybal RE (1980) Mass transfer operations3rd edn. McGraw-Hill, New York

    Google Scholar 

  57. 57.

    Porter JF, McKay G, Choy KH (1999) The prediction of sorption from a binary mixture of acidic dyes using single- and mixed-isotherm variants of the ideal adsorbed solute theory. Chem. Eng. Sci. 54:5863–5885

    CAS  Google Scholar 

  58. 58.

    Syafiuddin A, Salmiati S, Jonbi J, Fulazzaky MA (2018) Application of the kinetic and isotherm models for better understanding of the behaviors of silver nanoparticles adsorption onto different adsorbents. J. Environ. Manag. 218:59–70

    CAS  Google Scholar 

  59. 59.

    Mall ID, Srivastava VC (2005) Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids Surf. A: Physicochem. Eng. Asp. 264:17–28

    CAS  Google Scholar 

  60. 60.

    Uma BS, Sharma YC (2013) Equilibrium and kinetic studies for removal of malachite green from aqueous solution by a low cost activated carbon. J. Ind. Eng. Chem. 19:1099–1105

    CAS  Google Scholar 

  61. 61.

    Ghaedi M, Mosallanejad N (2014) Study of competitive adsorption of malachite green and sunset yellow dyes on cadmium hydroxide nanowires loaded on activated carbon. J. Ind. Eng. Chem. 20:1085–1096

    CAS  Google Scholar 

  62. 62.

    Setareh Derakhshan M, Moradi O (2014) The study of thermodynamics and kinetics methyl orange and malachite green by SWCNTs, SWCNT-COOH and SWCNT-NH2 as adsorbents from aqueous solution. J. Ind. Eng. Chem. 20:3186–3194

    CAS  Google Scholar 

  63. 63.

    Rajabi M, Mirza B, Mahanpoor K, Mirjalili M, Najafi F, Moradi O, Sadegh H, Shahryari-ghoshekandi R, Asif M, Tyagi I, Agarwal S, Gupta VK (2016) Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters. J. Ind. Eng. Chem. 34:130–138

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Fariba Safa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Safa, F., Alinezhad, Y. Ternary nanocomposite of SiO2/Fe3O4/Multi-Walled Carbon Nanotubes for Efficient Adsorption of Malachite Green: Response Surface Modeling, Equilibrium Isotherms and Kinetics. Silicon 12, 1619–1637 (2020). https://doi.org/10.1007/s12633-019-00251-0

Download citation


  • Multi-walled carbon nanotubes
  • Ternary nanocomposite
  • Malachite green
  • Adsorption
  • Response surface modeling