Skip to main content
Log in

Photonic Band Gap Alteration in LiNbO3-SiO2 Based 1D Periodic Multilayered Structure via Plate Wave

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Acoustic control on refractive index of periodic nanostructures facilitate a colocalize far-reaching control of light propagation. Static tuning of photonic band gap in lithium niobate and silicon dioxide based one dimensional superlattice through the GHz plate wave perturbation is reported. Acoustic field confinement in proposed structure produces field pattern of mechanical strain, analysed for fundamental symmetric plate mode within the elastic limit constraints of material. Contraction and rarefaction raises and lowers down the refractive index of material along the periodicity of structure. Using appropriate photo-elastic relations, the modified refractive index for both the materials of unit cell of periodic structure is estimated at different instants of perturbation. It is found that the refractive index contrast of unit cell gets altered with acoustic propagation and leads to photonic band gap modification. The available photonic band gap for transverse electric waves in both unperturbed and acoustically perturbed structure is calculated using Bloch’s theorem and transfer matrix method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062. https://doi.org/10.1103/PhysRevLett.58.2059

    Article  CAS  PubMed  Google Scholar 

  2. Inoue K, Ohtaka K (2004) Photonic crystals. Springer, Berlin. https://doi.org/10.1007/978-3-540-40032-5

    Book  Google Scholar 

  3. Aly AH, Ameen AA, Vigneswaran D (2018) Superconductor nanometallic photonic crystals as a novel smart window for low-temperature applications. J Supercond Nov Magn 1–7. https://doi.org/10.1007/s10948-018-4716-6

  4. Aly AH, Sayed H (2018) Computer simulation and modeling of solar energy based on photonic band gap materials. Opt Appl 48:117–126. https://doi.org/10.5277/oa180111

    Article  CAS  Google Scholar 

  5. Aly AH, Hsu H-T, Yang T-J, Wu C-J, Hwangbo CK (2009) Extraordinary optical properties of a superconducting periodic multilayer in near-zero-permittivity operation range. J Appl Phys 105:083917. https://doi.org/10.1063/1.3115482

    Article  CAS  Google Scholar 

  6. Sreejith KP, Mathew V (2018) Investigation of transmission properties in one-dimensional quasi-periodic superconducting photonic crystal. J Supercond Nov Magn 31:1993–1998. https://doi.org/10.1007/s10948-017-4458-x

    Article  CAS  Google Scholar 

  7. Aly AH, Sabra W (2016) Superconductor-semiconductor metamaterial photonic crystals. J Supercond Nov Magn 29:1981–1986. https://doi.org/10.1007/s10948-016-3478-2

    Article  CAS  Google Scholar 

  8. Aly AH (2008) Metallic and superconducting photonic crystal. J Supercond Nov Magn 21:421–425. https://doi.org/10.1007/s10948-008-0352-x

    Article  CAS  Google Scholar 

  9. Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  10. Liu H, Liu P, Bian L, Liu C, Zhou Q, Chen Y (2017) Electrically tunable terahertz metamaterials based on graphene stacks array. Superlattices Microstruct 112:470–479. https://doi.org/10.1016/j.spmi.2017.09.058

    Article  CAS  Google Scholar 

  11. Gates B, Xia Y (2001) Photonic crystals that can be addressed with an external magnetic field. Adv Mater 13:1605–1608. https://doi.org/10.1002/1521-4095(200111)13:21<1605::AID-ADMA1605>3.0.CO;2-9

    Article  CAS  Google Scholar 

  12. Aly AH, El-Naggar SA, Elsayed HA (2015) Tunability of two dimensional n-doped semiconductor photonic crystals based on the Faraday effect. Opt Express 23:15038–15046. https://doi.org/10.1364/OE.23.015038

    Article  CAS  PubMed  Google Scholar 

  13. Rose JL (2014) Ultrasonic guided waves in solid media. Cambridge University Press, New York

    Book  Google Scholar 

  14. Andrushchak AS, Mytsyk BG, Laba HP, Yurkevych OV, Solskii IM, Kityk AV, Sahraoui B (2009) Complete sets of elastic constants and photoelastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature. J Appl Phys 106. https://doi.org/10.1063/1.3238507

  15. Biegelsen DK (1974) Photoelastic tensor of silicon and the volume dependence of the average gap. Phys Rev Lett 32:1196–1199. https://doi.org/10.1103/PhysRevLett.32.1196

    Article  CAS  Google Scholar 

  16. Rabiei P, Ma J, Khan S, Chiles J, Fathpour S (2013) Heterogeneous lithium niobate photonics on silicon substrates. Opt Express 21:25573–25581. https://doi.org/10.1364/OE.21.025573

    Article  CAS  PubMed  Google Scholar 

  17. Yeh P (2005) Optical waves in layered media. Wiley, New York

    Google Scholar 

  18. Kushwaha MS, Halevi P, Martínez G., Dobrzynski L, Djafari-Rouhani B (1994) Theory of acoustic band structure of periodic elastic composites. Phys Rev B 49:2313–2322. https://doi.org/10.1103/PhysRevB.49.2313

    Article  CAS  Google Scholar 

  19. He J, Djafari-Rouhani B, Sapriel J (1988) Theory of light scattering by longitudinal-acoustic phonons in superlattices. Phys Rev B 37:4086–4098. https://doi.org/10.1103/PhysRevB.37.4086

    Article  CAS  Google Scholar 

  20. Bajak IL, McNab A, Richter J, Wilkinson CDW (1981) Attenuation of acoustic waves in lithium niobate. J Acoust Soc Am 69:689–695. https://doi.org/10.1121/1.385588

    Article  CAS  Google Scholar 

  21. Yariv A, Yeh P (2002) Optical waves in crystals: propagation and control of laser radiation. Wiley, New York

    Google Scholar 

  22. Rolland Q, Oudich M, El-Jallal S, Dupont S, Pennec Y, Gazalet J, Kastelik JC, Lévêque G, Djafari-Rouhani B (2012) Acousto-optic couplings in two-dimensional phoxonic crystal cavities. Appl Phys Lett 101:061109. https://doi.org/10.1063/1.4744539

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors Mr. Suraj Prakash would like to acknowledge UGC for providing financial support through BSR fellowship. The work is supported by the project No. MRP-MAJOR-ELEC-2013-12554, UGC, New Delhi. Dr. Gaurav Sharma is thankful to DST for NPDF/2017/529. The authors would like to express gratitude towards Prof. R.D.S. Yadava for his valuable discussions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, S., Sharma, G., Yadav, G.C. et al. Photonic Band Gap Alteration in LiNbO3-SiO2 Based 1D Periodic Multilayered Structure via Plate Wave. Silicon 11, 1783–1789 (2019). https://doi.org/10.1007/s12633-018-9993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9993-y

Keywords

Navigation