Skip to main content
Log in

ZnMgO-nanorod-based Schottky Light-emitting Diode Fabricated on n-SiC Substrate Using Low-temperature Method

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

We fabricated a ZnMgOnanorodbased Schottky lightemitting diode (LED) on an n-SiC substrate using a lowtemperature growth method. Study about structural properties of ZnMgO nanorods was carried out by field emission scanning electron microscopy (FE-SEM) and fourier-transforms infrared spectroscopy (FTIR). The electrooptical properties of the ZnMgO nanorods were investigated using photoluminescence (PL), electroluminescence (EL) and current–voltage measurements. The values of ideality factor, barrier height and series resistance were calculated 3.22 1.1eV and 187Ω, respectively. The understanding of the optical properties and luminescence performance of the ZnMgO-nanorod based Schottky LED is important for applications in optical nanodevices. The PL measurements of the ZnMgO nanorods revealed a blueshift of the ultraviolet (UV) emission peak, which suggests their potentials for the development of tunable optical nanodevices. The blueshift of the UV emission was attributed to the diffusion of Mg and formation of the ternary ZnMgO alloy. The EL spectra exhibited an emission band covering the visible range from 40 nm to 700 nm. Gaussian functions were employed to simulate the experimental data, which revealed that the emission band can be regarded as a superposition of violet, blue, green and yellow emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang YL, Wei XQ, Guo N, Deng XL, Xu XJ (2017) Synthesis and characterization of Cd-doped ZnMn2O4 microspheres as supercapacitor electrodes. J Mater Sci: Mater Electron 28(2):1223–1228

    CAS  Google Scholar 

  2. Xie XY, Zhan P, Li LY, Zhou DJ, Guo DY, Meng JX, Bai Y, Zheng WJ (2015) Synthesis of S-doped ZnO by the interaction of sulfur with zinc salt in PGE200. J Alloys Compd 644:383–389

    Article  CAS  Google Scholar 

  3. Bai HW, Liu ZY, Sun DD (2012) Hierarchical nitrogen-doped flowerlike ZnO nanostructure and its multifunctional environmental applications. Asian J Chem 7:1772–1780

    Article  CAS  Google Scholar 

  4. Xing GZ, Yi JB, Tao JG, Liu T, Wong LM, Zhang Z, Li GP, Wang SJ, Ding J, Sum TC, Huan CHA, Wu T (2008) Comparative study of room-temperature ferromagnetism in Cu-Doped ZnO nanowires enhanced by structural inhomogeneity. Adv Mater 20:3521

    Article  CAS  Google Scholar 

  5. Baka O, Azizi A, Velumani S, Schmerber G, Dinia A (2014) Effect of Al concentrations on the electrodeposition and properties of transparent Al-doped ZnO thin films. J Mater Sci Mat Electron 25:1761

    Article  CAS  Google Scholar 

  6. You JB, Zhang XW, Dong JJ, Song XM, Yin ZG, Chen NF, Yan H (2009) Localized-surface-plasmon enhanced the 357 nm forward emission from ZnMgO films capped by Pt nanoparticles. Nanoscale Res Lett 4(10):1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lupan O, Pauporte T, Viana B, Aschehoug P, Ahmadi M, Cuenya BR, Rudzevich Y, Lin Y, Chow L (2013) Eu-doped ZnO nanowire arrays grown by electrodeposition. Appl Surf Sci 282:782–788

    Article  CAS  Google Scholar 

  8. Peng SY, Xu ZN, Chen QS, Wang ZQ, Lv DM, Sun J, Chen YM, Guo GC (2015) Enhanced stability of Pd/ZnO catalyst for CO oxidative coupling to dimethyl oxalate: effect of Mg+ doping. ACS Catal 5:4410

    Article  CAS  Google Scholar 

  9. Kling R, Kirchner C, Gruber T, Reuss F, Waag A (2004) Analysis of ZnO and ZnMgO nanopillars grown by self-organization. Nanotechnology 15:1043–1046

    Article  CAS  Google Scholar 

  10. Yang AL, Wei HY, Liu XL, Song HP, Zheng GL, Guo Y, Jiao CM, Yang SY, Zhu QS, Wang ZG (2009) Synthesis and characterization of well-aligned Zn1xMgxO nanorods and film by metal organic chemical vapor deposition. J Cryst Growth 311:278–281

    Article  CAS  Google Scholar 

  11. Wang JR, Zhang YZ, Ye ZZ, Lu JG, He HP, Zeng YJ, Ma QB, Huang JY, Zhu LP, Wu YZ, Yang YF, Goang L (2008) Microstructure and crystal defects in ZnMgO pleated nanosheets. J Appl Phys 104:103507

    Article  CAS  Google Scholar 

  12. Czekalla C, Guinard J, Hanisch C, Cao BQ, Kaidashev EM, Boukos N, Travlos A, Renard J, Gayral B, Dang DL, Lorenz M, Grundmann M (2008) Spatial fluctuations of optical emission from single ZnO/MgZnO nanowire quantum wells. Nanotechnology 19:115202–115208

    Article  CAS  PubMed  Google Scholar 

  13. Zhang YZ, Lu JG, Ye ZZ, Zeng YJ, Zhu LP, Huang JY (2007) Quasi-aligned Zn1− xMgx O nanorods synthesized by thermal evaporation. J Phys D: Appl Phys 40:3490

    Article  CAS  Google Scholar 

  14. Zhu L, Zhi M, Ye Z, Zhao B (2006) Catalyst-free two-step growth of quasialigned ZnMgO nanorods and their properties. Appl Phys Lett 88:113106

    Article  CAS  Google Scholar 

  15. Hsu HC, Wu CY, Cheng HM, Hsieh WF (2006) Band gap engineering and stimulated emission of ZnMgO nanowires. Appl Phys Lett 89:013101

    Article  CAS  Google Scholar 

  16. Ahn CH, Mohanta SK, Kong BH, Cho HK (2009) Enhancement of band-edge emission of ZnO from one-dimensional ZnO/MgZnO core/shell nanostructures. J Phys D: Appl Phys 42:115106

    Article  CAS  Google Scholar 

  17. Fang X, Wang X, Zhao D, Zhao H, Fang F, Wei Z, Li J, Chu X, Wang F, Wang DD, Yan YS (2014) Electroluminescence of ZnO nanorods/ZnMgO films/p-SiC structure heterojunction LED. Physica E 59:93

    Article  CAS  Google Scholar 

  18. Wu G, Zheng W, Gao F, Yang H, Zhao Y, Yin J, Zheng W, Li W, Zhang B, Dua G (2016) Near infrared electroluminescence of ZnMgO/InN core-shell nanorod heterostructures grown on Si substrate. Phys Chem Chem Phys 18:20812

    Article  CAS  PubMed  Google Scholar 

  19. Yangyang Z, Manoj KR, Elias KS, Goswami DY (2012) Synthesis, characterization, and applications of ZnO nanowires. J Nanomater 624520:1–22

    Article  CAS  Google Scholar 

  20. Khan M, Naqvi AH, Ahmad M (2015) Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles. Toxicol Rep 2:765–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lakshmipriya V, Radha KP (2016) Synthesis, structural, vibrational, thermal studies of Mg doped ZnO nano particles using chemical precipitation method. Int J Multidiscip Educ Res 10(1):39–42

    Google Scholar 

  22. Gao P, Tian X, Yang C, Zhou Z, Li Y, Wang Y, Komarneni S (2016) Fabrication, performance and mechanism of MgO meso-/macroporous nanostructures for simultaneous removal of As (iii) and F in a groundwater system. Environ Sci: Nano 3(6):1416–24

    CAS  Google Scholar 

  23. Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts. Wiley, p 18

  24. Cheung SK, Cheung NW (1986) Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett 49:85

    Article  CAS  Google Scholar 

  25. Bano N, Hussain I, Sawaf S, Alshammari A, Saleemi F (2017) Enhancement of external quantum efficiency and quality of heterojunction white LEDs by varying the size of ZnO nanorods. Nanotechnology 28:245203

    Article  CAS  PubMed  Google Scholar 

  26. Hsu HC, Wu CY, Cheng HM, Hsieh WF (2006) Band gap engineering and stimulated emission of ZnMgO nanowires. Appl Phys Lett 89:013101

    Article  CAS  Google Scholar 

  27. Ye JD, Teoh KW, Sun XW, Lo GQ, Kwong DL, Zhao H, Gu SL, Zhang R, Zheng YD, Oh SA, Zhang XH, Tripathy S (2007) Effects of alloying and localized electronic states on the resonant raman spectra of ZnMgO composition induced effecst on the physical behaviour of sprayed ZnMgO film. Appl Phys Lett 91: 091901

    Article  CAS  Google Scholar 

  28. Park SH, Kim KH, Seo SY, Kim SH, S W Han (2006) Semiconductor nanostructures for optoelectronic devices: processing. J Electron Mater 35:1680

    Article  CAS  Google Scholar 

  29. Pan CJ, Hsu HC, Cheng HM, Wu CY, Hsieh WF (2007) Structural and optical properties of ZnMgO nanostructures formed by Mg in-diffused ZnO nanowires. J Solid State Chem 180:1188

    Article  CAS  Google Scholar 

  30. Djurišić AB, Leung HY, Tam KH, Hsu FY, Ding L, Ge WK, Zhong YC, Wong KS, Chan WK, Tam HL, Cheah KW, Kwok WM, Phillips DL (2007) Defect emissions in ZnO nanostructures. Nanotechnol 18:095702

    Article  CAS  Google Scholar 

  31. Ahn CH, Kim YY, Kim DC, Mohanta SK, Cho HK (2009) A comparative analysis of deep level emission in ZnO layers deposited by various methods. J Appl Phys 105:013502

    Article  CAS  Google Scholar 

  32. Willander M, Nur O, Sadaf JR, Qadir MI, Zaman S, Zainelabdin A, Bano N, Hussain I (2010) Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials 3:2643

    Article  CAS  PubMed Central  Google Scholar 

  33. Ilhan M (2017) Electrical characterization of Al/fluorescein sodium salt organic semiconductor/Au diode by current-voltage and capacitance-voltage methods. J Mater Electron Dev 1:15

    Google Scholar 

  34. Altndal S (2017) The origin of increase in the barrier height and decrease in ideality factor with increase temperature in Ag/SiO2/p-Si (MIS) Schottky Barrier Diodes (SBDs). J Mater Electron Dev 1:42

    Google Scholar 

  35. Özerli H, Karteri Ï, Bekereci A, Karataş Ş (2017) Analysis of current-voltage characteristics on inhomogeneous Zn/p-Si (100) Schottky contacts. J Mater Electron Dev 1:83

    Google Scholar 

  36. Bano N, Hussain I, Soomro MY, EL-Naggar AM, Albassam AA (2018) Solution processable inverted structure ZnO-organic hybrid heterojuction white LEDs. Opt Mater 79:322

    Article  CAS  Google Scholar 

  37. Lock DA, Hall SRG, Prins AD, Crutchley BG, Kynaston S, Sweeney SJ (2013) LED junction temperature measurement using generated photocurrent. J Disp Technol 9:396

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was supported by a grant from the “Research Center of the Female Scientific and Medical Colleges, Deanship of Scientific Research, King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bano, N., Hussain, I., Saleemi, F. et al. ZnMgO-nanorod-based Schottky Light-emitting Diode Fabricated on n-SiC Substrate Using Low-temperature Method. Silicon 11, 1755–1761 (2019). https://doi.org/10.1007/s12633-018-9990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9990-1

Keywords

Navigation