Skip to main content
Log in

Ultra-Thin High-K Dielectric Profile Based NBTI Compact Model for Nanoscale Bulk MOSFET

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Negative Bias Temperature Instability (NBTI) is a key reliability and consistency issue for ultra-scaled Silicon IC technology with substantial consequences on both analog and digital circuit design For nano devices, NBTI apparently increases the threshold voltage exponentially on transient platform consequently, decreases the drain current and transconductance in the similar manner. The threshold voltage recovery function manifests the logarithmic transient reliance. The issue is of critical perturb, especially in p-channel nanoscale MOS devices, as these devices generally operate with negative gate-to-source voltage Use of high-K dielectric stack enhances the NBTI impact on these nano devices The manuscript investigates and models the NBTI characteristics for bulk driven nanoscale p-MOS device with ultrathin high-K gate dielectric stack. The gate terminal is transiently negatively biased and further relaxed with positive bias conditions for ample time for the recovery of the initial characteristics. Threshold voltage shift at various gate bias conditions and diverse temperatures demonstrate that NBTI is highly subjugated by the defect generation and hole trapping bustle in gate dielectric pre-existing traps NBTI recovery is accelerated by increasing the temperature. Threshold voltage shift in recovery phase showed a swift initial transient, ensued by an acutely sluggish, passive non-exponential transient. A compact NBTI model for nano MOSFET is proffered capturing the dependency of stress phase gate bias, recovery gate voltage and operating temperature Importantly, only the restricted bunch of fitting parameters are required for anticipation. The proposed NBTI model is valid for FD/SOI/FinFET technology also and can be easily implemented on TCAD circuit simulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kimizuka N, Yamamoto T, Mogami T, Yamaguchi K, Imai K, Horiuchi T (1999) The impact of bias temperature instability for direct-tunneling ultra-thin gate oxide on MOSFET scaling. In: 1999 Symposium on VLSI Technology, 1999. Digest of Technical Papers, pp 73–74

  2. Krishnan AT, Reddy V, Chakravarthi S, Rodriguez J, John S, Krishnan S (2003) NBTI impact on transistor and circuit: models, mechanisms and scaling effects [MOSFETs]. In: IEEE International on Electron Devices Meeting, 2003. IEDM’03 Technical Digest, pp 14–15

  3. Tsujikawa S, Yugami J (2005) Positive charge generation due to species of hydrogen during NBTI phenomenon in pMOSFETs with ultra-thin siON gate dielectrics. Microelectron Reliab 45(1):65–69

    Article  CAS  Google Scholar 

  4. Mahapatra S, Alam MA, Kumar PB, Dalei TR, Varghese D, Saha D (2005) Negative bias temperature instability in CMOS devices. Microelectron Eng 80:114–121

    Article  CAS  Google Scholar 

  5. Kerber A, Nigam T (2013) Challenges in the characterization and modeling of BTI induced variability in metal gate/High-k CMOS technologies. In: 2013 IEEE International on Reliability Physics Symposium (IRPS), pp 2D–4

  6. Mahapatra S et al (2013) A comparative study of different physics-based NBTI models. IEEE Trans Electron Devices 60(3):901–916

    Article  Google Scholar 

  7. Pae S et al (2008) BTI reliability of 45 nm metal-gate process technology. In: IEEE International on Reliability Physics Symposium, 2008. IRPS 2008, pp 352–357

  8. Pae S et al (2010) Reliability characterization of 32nm high-k and metal-gate logic transistor technology. In: 2010 IEEE International on Reliability Physics Symposium (IRPS), pp 287–292

  9. Cartier E et al (2011) Fundamental aspects of HfO 2-based high-k metal gate stack reliability and implications on t inv-scaling. In: 2011 IEEE International on Electron Devices Meeting (IEDM), pp 14–18

  10. Joshi K et al (2013) HKMG process impact on N, P BTI: Role of thermal IL scaling, IL/HK integration and post HK nitridation. In: 2013 IEEE International on Reliability Physics Symposium (IRPS), pp 4C–2

  11. Mitani Y, Nagamine M, Satake H, Toriumi A (2002) NBTI mechanism in ultra-thin gate dielectric-nitrogen-originated mechanism in siON. In: International Electron Devices Meeting, 2002. IEDM’02, pp 509–512

  12. Mitani Y (2004) Influence of nitrogen in ultra-thin siON on negative bias temperature instability under AC stress. In: IEEE International on Electron Devices Meeting, 2004. IEDM Technical Digest, pp 117–120

  13. Huard V, et al (2005) A thorough investigation of MOSFETs NBTI degradation. Microelectron Reliab 45(1):83–98

    Article  CAS  Google Scholar 

  14. Liu WJ et al (2007) On-the-fly interface trap measurement and its impact on the understanding of NBTI mechanism for p-MOSFETs with siON gate dielectric. In: IEEE International on Electron Devices Meeting, 2007. IEDM 2007, pp 813–816

  15. Mahapatra S et al (2011) A critical re-evaluation of the usefulness of RD framework in predicting NBTI stress and recovery. In: 2011 IEEE International on Reliability Physics Symposium (IRPS), pp 6A–3

  16. Stathis JH, LaRosa G, Chou A (2004) Broad energy distribution of NBTI-induced interface states in p-MOSFETs with ultra-thin nitrided oxide. In: 2004 IEEE International on Reliability Physics Symposium Proceedings, 2004. 42nd Annual , pp 1–7

  17. Neugroschel A et al (2006) An accurate lifetime analysis methodology incorporating governing NBTI mechanisms in high-k/SiO2 gate stacks. In: International Electron Devices Meeting, 2006. IEDM’06, pp 1–4

  18. Mukhopadhyay S et al (2014) Trap generation in IL and HK layers during BTI/TDDB stress in scaled HKMG N and P MOSFETs. In: 2014 IEEE International on Reliability Physics Symposium, pp GD–3

  19. Krishnan AT et al (2005) Material dependence of hydrogen diffusion: Implications for NBTI degradation. In: IEEE International on Electron Devices Meeting, 2005. IEDM Technical Digest, pp 4–pp

  20. Grasser T et al (2011) The paradigm shift in understanding the bias temperature instability: From reaction–diffusion to switching oxide traps. IEEE Trans Electron Devices 58(11):3652–3666

    Article  CAS  Google Scholar 

  21. Schanovsky F, Grasser T (2012) On the microscopic limit of the modified reaction-diffusion model for the negative bias temperature instability. In: 2012 IEEE International Reliability Physics Symposium (IRPS), pp XT–10

  22. Alam MA, Mahapatra S (2005) A comprehensive model of PMOS NBTI degradation. Microelectron Reliab 45(1):71–81

    Article  Google Scholar 

  23. Schroder DK (2007) Negative bias temperature instability: What do we understand?. Microelectron Reliab 47(6):841–852

    Article  Google Scholar 

  24. Ryan TJ, Lenahan PM, Grasser T, Enichlmair H (2010) Observations of negative bias temperature instability defect generation via on the fly electron spin resonance. Appl Phys Lett 96(22):223509

    Article  Google Scholar 

  25. Shockley W, Read WT Jr (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87(5):835

    Article  CAS  Google Scholar 

  26. Islam AE, Mahapatra S, Deora S, Maheta VD, Alam MA (2011) Essential aspects of negative bias temperature instability (nbti). ECS Trans 35(4):145–174

    Article  CAS  Google Scholar 

  27. Swami Y, Rai S (2016) Comparative methodical assessment of established MOSFET threshold voltage extraction methods at 10-nm technology node. Circuits Syst 7(13):4248

    Article  Google Scholar 

  28. Swami Y, Rai S (2017) Modeling, simulation, and analysis of novel threshold voltage definition for nano-MOSFET. J Nanotechnol 2017:9. https://doi.org/10.1155/2017/4678571

    Article  Google Scholar 

  29. Jeppson KO, Svensson CM (1977) Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices. J Appl Phys 48(5):2004–2014

    Article  CAS  Google Scholar 

  30. Karatsori TA, Theodorou CG, Haendler S, Planes N, Ghibaudo G, Dimitriadis CA (2016) Characterization and modeling of NBTI in nanoscale ultraThin body ultraThin box FD-SOI MOSFETs. IEEE Trans Electron Devices 63(12):4913–4918

    Article  CAS  Google Scholar 

  31. Grasser T, Gos W, Sverdlov V, Kaczer B (2007) The universality of NBTI relaxation and its implications for modeling and characterization. In: Proceedings of the 45th annual IEEE international on reliability physics symposium, 2007, pp 268–280

  32. Ielmini D, Manigrasso M, Gattel F, Valentini MG (2009) A new NBTI model based on hole trapping and structural relaxation in MOS dielectrics. IEEE Trans Electron Devices 56(9):1943–1952

    Article  CAS  Google Scholar 

  33. Swami Y, Rai S (2016) Modeling and analysis of sub-surface leakage current in nano-MOSFET under cutoff regime. Superlattices Microstruct 102:259–272. https://doi.org/10.1016/j.spmi.2016.12.044

    Article  Google Scholar 

  34. Grasser T, Rott K, Reisinger H, Waltl M, Schanovsky F, Kaczer B (2014) NBTI In Nanoscale MOSFETs - The Ultimate Modeling Benchmark. IEEE Trans Electron Devices 61(11):3586–3593

    Article  Google Scholar 

  35. Angot D et al (2013) BTI variability fundamental understandings and impact on digital logic by the use of extensive dataset. In: 2013 IEEE International Electron Devices Meeting, pp 15.4.1–15.4.4

  36. Ma C et al (2014) Universal NBTI compact model for circuit aging simulation under any stress conditions. IEEE Trans Device Mater Reliab 14(3):818–825

    Article  Google Scholar 

  37. Wu P, Ma C, Zhang L, Lin X, Chan M (2015) Investigation of nitrogen enhanced NBTI effect using the universal prediction model. In: 2015 IEEE International Reliability Physics Symposium, pp XT.5.1–XT.5.4

  38. Vattikonda R, Wang W, Cao Y (2006) Modeling and minimization of PMOS NBTI effect for robust nanometer design. In: 2006 43rd ACM/IEEE Design Automation Conference, pp 1047–1052

  39. Huard V et al (2007) New characterization and modeling approach for NBTI degradation from transistor to product level. In: 2007 IEEE International Electron Devices Meeting, pp 797–800

  40. Parihar N, Goel N, Chaudhary A, Mahapatra S (2016) A modeling framework for NBTI degradation under dynamic voltage and frequency scaling. IEEE Trans Electron Devices 63(3):946–953

    Article  CAS  Google Scholar 

  41. Thomas A, Nelhiebel M, Grasser T (2008) On the temperature dependence of NBTI recovery. Microelectron Reliab 48(8):1178–1184

    Google Scholar 

  42. Grasser T et al (2007) Simultaneous Extraction of Recoverable and Permanent Components Contributing to Bias-Temperature Instability. In: 2007 IEEE International Electron Devices Meeting, pp 801–804

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashu Swami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swami, Y., Rai, S. Ultra-Thin High-K Dielectric Profile Based NBTI Compact Model for Nanoscale Bulk MOSFET. Silicon 11, 1661–1671 (2019). https://doi.org/10.1007/s12633-018-9984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9984-z

Keywords

Navigation