Advertisement

Silicon

, Volume 11, Issue 1, pp 137–143 | Cite as

Effect of Annealing Temperature on Structural and Electrical Properties of Al/ZrO2/p-Si MIS Schottky Diodes

  • K. Sasikumar
  • R. BharathikannanEmail author
  • M. Raja
Original Paper
  • 55 Downloads

Abstract

The structural and electrical properties of Al/ZrO2/p-Si Schottky barrier diodes (SBDs) have been investigated at different annealing temperatures (300, 400, 500 and 600 °C). X-ray diffraction (XRD) analysis shows that the film annealed at 600 °C exhibits better crystalline nature with monoclinic phase. X-ray photoelectron spectroscopy (XPS) analysis reveals that the oxidation state of ZrO2 film is Zr4+. The scanning electron microscopy (SEM) image shows that the film annealed at 600 °C exhibits sub-micro-sized and square-shaped grains. The thermionic emission (TE) model determines the diode parameters such as barrier height (ΦB), ideality factor (n), series resistance (Rs) and saturation current density (Js) from JV characteristics and Cheung’s method. The ideality factor of the Al/ZrO2/p-Si diodes decreases (3.772–3.442) with increasing annealing temperature (300–600 °C).

Keywords

XRD analysis JV characteristics Barrier height Insulating layer ZrO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to the Department of Science and Technology-FIST, Project No.: SR/FST/COLLEGE-154/2013 for providing instrument facilities at Sri Ramakrishna Engineering College, Coimbatore, India.

References

  1. 1.
    Rhoderick EH, Williams RH (1988) Metal-semiconductor contacts, 2nd edn. Clarendon, OxfordGoogle Scholar
  2. 2.
    Zhong A, Sasaki T, Hane K (2014) Sens Actuators A 209:52–56CrossRefGoogle Scholar
  3. 3.
    Soylu M, Yakuphanoglu F (2011) Thin Solid Films 519:1950–1954CrossRefGoogle Scholar
  4. 4.
    Frenzel H, Lajn A, Brandt M, von Wenckstern H, Biehne G, Hochmuth H, Lorenz M, Grundmann M (2008) Appl Phys Lett 92:192108CrossRefGoogle Scholar
  5. 5.
    Mridha S, Ghosh R, Basak D (2007) J Electron Mater 36:1643–1647CrossRefGoogle Scholar
  6. 6.
    Gajula DR, Baine P, Modreanu M, Hurley PK, Armstrong BM, McNeill DW (2014) Appl Phys Lett 104:012102CrossRefGoogle Scholar
  7. 7.
    Agrawal A, Lin J, Barth M, White R, Zheng B, Chopra S, Gupta S, Wang K, Gelatos J, Mohney SE, Datta S (2014) Appl Phys Lett 104:112101CrossRefGoogle Scholar
  8. 8.
    Islam R, Shine G, Saraswat KC (2014) Appl Phys Lett 105:182103CrossRefGoogle Scholar
  9. 9.
    Şahin B, Çetin H, Ayyildiz E (2005) Solid State Commun 135:490–495CrossRefGoogle Scholar
  10. 10.
    Li YZ, Li XM, Gao XD (2011) J Alloys Compd 509:7193–7197CrossRefGoogle Scholar
  11. 11.
    Raja M, Chandrasekaran J, Balaji M, Janarthanan B (2016) Mater Sci Semicond Process 56:145–154CrossRefGoogle Scholar
  12. 12.
    Yu J, Chen G, Li CX, Shafiei M, Ou JZ, du Plessis J, Kalantar-zadeh K, Lai PT, Wlodarski W (2011) Sens Actuators A 172:9–14CrossRefGoogle Scholar
  13. 13.
    Sönmezoğlu S, Akn S (2012) Curr Appl Phys 12:1372–1377CrossRefGoogle Scholar
  14. 14.
    Tang WM, Leung CH, Lai PT (2010) Thin Solid Films 519:505–511CrossRefGoogle Scholar
  15. 15.
    Henkel C, Abermann S, Bethge O, Pozzovivo G, Klang P, Stöger-Pollach M, Bertagnolli E (2011) Microelectron Eng 88:262–267CrossRefGoogle Scholar
  16. 16.
    Zhang W, Cui Y, Hu ZG, Yu WL, Sun J, Xu N, Ying ZF, Wu JD (2012) Thin Solid Films 520:6361–6367CrossRefGoogle Scholar
  17. 17.
    Štefanić G, Musić S, Sekulić A (1996) Thermochim Acta 273:119–133CrossRefGoogle Scholar
  18. 18.
    Gao Y, Masuda Y, Ohta H, Koumoto K (2004) Chem Mater 16:2615–2622CrossRefGoogle Scholar
  19. 19.
    Balaram N, Siva Pratap Reddy M, Rajagopal Reddy V, Park C (2016) Thin Solid Films 619:231–238CrossRefGoogle Scholar
  20. 20.
    Xiao D, He G, Sun Z, Lv J, Jin P, Zheng C, Liu M (2016) Ceram Int 42:759–766CrossRefGoogle Scholar
  21. 21.
    Tian C, Jiang D, Zhao Y, Liu Q, Hou J, Zhao J, Liang Q, Gao S, Qin J (2014) Mater Sci Eng B 184:67–71CrossRefGoogle Scholar
  22. 22.
    You H-C, Chang C-M, Liu T-F, Cheng C-C, Chang F-C, Ko F-H (2012) Appl Surf Sci 258:10084–10088CrossRefGoogle Scholar
  23. 23.
    Lin Y-J, Yu J-F (2015) J Non-Cryst Solids 426:132–136CrossRefGoogle Scholar
  24. 24.
    Venkataraj S, Kappertz O, Weis H, Drese R, Jayavel R, Wuttig M (2002) J Appl Phys 92:3599–3607CrossRefGoogle Scholar
  25. 25.
    Mahajan AM, Khairnar AG, Thibeault BJ (2016) Silicon 8:345–350CrossRefGoogle Scholar
  26. 26.
    Thomas R, Bhakta R, Milanov A, Devi A, Ehrhart P (2007) Chem Vap Depos 13:98–104CrossRefGoogle Scholar
  27. 27.
    Peshev P, Stambolova I, Vassilev S, Stefanov P, Blaskov V, Starbova K, Starbov N (2003) Mater Sci Eng B 97:106–110CrossRefGoogle Scholar
  28. 28.
    Chang S, Doong R (2005) Thin Solid Films 489:17–22CrossRefGoogle Scholar
  29. 29.
    Merzouk H, Chelouche A, Saoudi S, Djouadi D, Aksas A (2012) Appl Phys A 109:841–844CrossRefGoogle Scholar
  30. 30.
    Huang S-S, Wu T-B (2004) J Vac Sci Technol B 22:2702–2708CrossRefGoogle Scholar
  31. 31.
    Jia QX, Ebihara K, Ikegami T, Anderson WA (1994) Appl Phys A 58:487–491CrossRefGoogle Scholar
  32. 32.
    Lee H-K, Jyothi I, Janardhanam V, Shim K-H, Yun H-J, Lee S-N, Hong H, Jeong J-C, Choi C-J (2016) Microelectron Eng 163:26–31CrossRefGoogle Scholar
  33. 33.
    Tang WM, Leung CH, Lai PT (2010) Thin Solid Films 519:505–511CrossRefGoogle Scholar
  34. 34.
    Ejderha K, Zengin A, Orak İ, Tasyurek B, Kilinç T, Turut A (2011) Mater Sci Semicond Process 14:5–12CrossRefGoogle Scholar
  35. 35.
    Cheung SK, Cheung NW (1986) Appl Phys Lett 49:85–87CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhysicsSri Ramakrishna Engineering CollegeCoimbatoreIndia
  2. 2.Department of PhysicsSri Ramakrishna Mission Vidyalaya College of Arts and ScienceCoimbatoreIndia
  3. 3.Department of PhysicsRVS College of Engineering and TechnologyCoimbatoreIndia

Personalised recommendations