Advertisement

Silicon

, Volume 11, Issue 1, pp 165–174 | Cite as

Studying the Effect of Cobalt Doping on Optical and Magnetic Properties of Zinc Oxide Nanoparticles

  • A. A. AzabEmail author
  • S. A. Esmail
  • M. K. Abdelamksoud
Original Paper
  • 69 Downloads

Abstract

Nano-crystalline powders of Zn1−xCoxO with \(\left (0.0\le x\le 0.07 \right )\) have been synthesized by sol-gel method. X-ray diffraction patterns of the prepared samples confirm the formation of pure single phase hexagonal crystalline structure without any secondary phases were detected. The crystallite size was calculated from the X-ray data analysis, it was decreased by increasing the cobalt concentration. The hexagonal shape of the Co doped ZnO samples was confirmed using the micrographs of the high-resolution transmission electron microscope. Vibrational spectra of prepared samples shows a stretching mode at 426 cm− 1, which was assigned to the ZnO complex using Fourier transforms infrared spectra. The energy band gap was calculated using the diffuse reflectance measurements and it was found depending on cobalt dopant ions. Finally the magnetic properties were carried out using a vibrating sample magnetometer. The M-H loops showed ferromagnetic behavior for all Cobalt concentrations doped ZnO at room temperature and diamagnetic behavior for pure ZnO.

Keywords

Diluted magnetic semiconductors Nano-crystalline doped ZnO XRD FTIR UV diffuse reflectance Magnetic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zutic I, Fabian J, Das Sarma S (2004) Spintronics: fundamentals and applications. Rev Mod Phys 76:323–410.  https://doi.org/10.1103/RevModPhys.76.323 CrossRefGoogle Scholar
  2. 2.
    Dieny B, Sousa RC, Hérault J, Papusoi C, Prenat G, Ebels U, Houssameddine D, Rodmacq B, Auffret S, Prejbeanu-Buda L, Cyrille MC, Delaet B, Redon O, Ducruet C, Nozieres JP, Prejbeanu L (2011) Spintronic devices for memory and logic applications. Handb Magn Mater 19:107–127.  https://doi.org/10.1016/B978-0-444-53780-5.00002-8 CrossRefGoogle Scholar
  3. 3.
    Ferrand D, Wasiela A, Tatarenko S, Cibert J, Richter G, Grabs P (2001) Applications of II-VI diluted magnetic semiconductors for magneto-electronics. Solid State Commun 119:237–244.  https://doi.org/10.1016/S0038-1098(01)00174-0 CrossRefGoogle Scholar
  4. 4.
    Sorbiun M, Shayegan E, Ali M, Saeid R, Fardood T (2018) Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye. J Mater Sci Mater Electron 29:2806–2814.  https://doi.org/10.1007/s10854-017-8209-3 CrossRefGoogle Scholar
  5. 5.
    Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72:126501.  https://doi.org/10.1088/0034-4885/72/12/126501 CrossRefGoogle Scholar
  6. 6.
    Kołodziejczak-radzimska A, Jesionowski T (2014) Zinc Oxide—from synthesis to application: a review 2833–2881.  https://doi.org/10.3390/ma7042833
  7. 7.
    Zhong Lin W (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16:R829–R858.  https://doi.org/10.1088/0953-8984/16/25/R01 CrossRefGoogle Scholar
  8. 8.
    Nakayama I, Sakamoto R, Kinoshita M (n.d.) Structural and magnetic properties of transition metals doped ZnO (TM)/ZnO multilayers 3:2–6Google Scholar
  9. 9.
    Fang Y, Anis B, Duan C, Abdel-hafiez M (2016) Structural and magnetic properties of transition-metal-doped Zn 1 - x Fe x O. Nanoscale Res Lett.  https://doi.org/10.1186/s11671-016-1332-x
  10. 10.
    Murugadoss G (2012) Synthesis and characterization of transition metals doped ZnO nanorods. J Mater Sci Technol 28:587–593.  https://doi.org/10.1016/S1005-0302(12)60102-9 CrossRefGoogle Scholar
  11. 11.
    Ii L, Yanmei H, Liu X, Zhou E, Zinc C (2011) The, Chapter VI Physical Properties of Transition Metal (Mn, Co, Ni) doped ZnO 6.1Google Scholar
  12. 12.
    Zhou S, Potzger K, Xu Q, Talut G, Lorenz M, Skorupa W, Helm M, Fassbender J, Grundmann M, Schmidt H (2009) Ferromagnetic transition metal implanted ZnO: A diluted magnetic semiconductor? Vacuum 83:13–19.  https://doi.org/10.1016/j.vacuum.2009.01.030 CrossRefGoogle Scholar
  13. 13.
    Fert A (2008) Origin, development, and future of spintronics (Nobel lecture). Angew Chemie - Int Ed 47:5956–5967.  https://doi.org/10.1002/anie.200801093 CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Luo Y, Lin YH, Nan CW (2013) Ferromagnetic and optical behaviors observed in Mn-doped ZnO-based thin films. Thin Solid Films 537:239–241.  https://doi.org/10.1016/j.tsf.2013.04.082 CrossRefGoogle Scholar
  15. 15.
    Liu JJ, Yu MH, Zhou WL (2006) Fabrication of Mn-doped ZnO diluted magnetic semiconductor nanostructures by chemical vapor deposition. J Appl Phys 99.  https://doi.org/10.1063/1.2173235
  16. 16.
    Wang Q, Sun Q, Rao BK, Jena P (2004) Magnetism and energetics of Mn-doped ZnO (1010) thin films. Phys Rev B - Condens Matter Mater Phys 69:4–7.  https://doi.org/10.1103/PhysRevB.69.233310 CrossRefGoogle Scholar
  17. 17.
    Liu Y, Liu H, Chen Z, Kadasala N, Mao C, Wang Y, Zhang Y, Liu H, Liu Y, Yang J, Yan Y (2014) Effects of Ni concentration on structural, magnetic and optical properties of Ni-doped ZnO nanoparticles. J Alloys Compd 604:281–285.  https://doi.org/10.1016/j.jallcom.2014.03.079 CrossRefGoogle Scholar
  18. 18.
    Doğan N, Bingölbali A, Arda L (2015) Preparation, structure and magnetic characterization of Ni doped ZnO nano-particles. J Magn Magn Mater 373:226–230.  https://doi.org/10.1016/j.jmmm.2014.03.053 CrossRefGoogle Scholar
  19. 19.
    Djaja NF, Montja DA, Saleh R (2013) The effect of Co incorporation into ZnO nanoparticles. Adv Mater Phys Chem 3:33–41.  https://doi.org/10.4236/ampc.2013.31006 CrossRefGoogle Scholar
  20. 20.
    Xu L, Zhang H, Shen K, Xu M, Xu Q (2012) Room-temperature ferromagnetism in Co-doped ZnO prepared by microemulsion. J Supercond Nov Magn 25:1951–1956.  https://doi.org/10.1007/s10948-012-1535-z CrossRefGoogle Scholar
  21. 21.
    Abdellatif MH, El-Komy GM, Azab AA, Moustafa AM (2017) Oscillator strength and dispersive energy of dipoles in ferrite thin film. Mater Res Express 4:76410.  https://doi.org/10.1088/2053-1591/aa7e57 CrossRefGoogle Scholar
  22. 22.
    Straumal B, Baretzky B, Mazilkin A, Protasova S, Myatiev A, Straumal P (2009) Increase of Mn solubility with decreasing grain size in ZnO. J Eur Ceram Soc 29:1963–1970.  https://doi.org/10.1016/j.jeurceramsoc.2009.01.005 CrossRefGoogle Scholar
  23. 23.
    Shatnawi M, Alsmadi AM, Bsoul I, Salameh B, Alna’Washi GA, Al-Dweri F, El Akkad F (2016) Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. J Alloys Compd 655:244–252.  https://doi.org/10.1016/j.jallcom.2015.09.166 CrossRefGoogle Scholar
  24. 24.
    Þorsteinsson EB (2012) Ferromagnetism and the oxygen vacancy in ZnO:(Mn, Co). Faculty of Physical Sciences, School of Engineering and Natural Sciences, University of Iceland, ReykjavikGoogle Scholar
  25. 25.
    Von Molnár S (2006) Magnetic polarons in concentrated and diluted magnetic semiconductors, pp 437–452Google Scholar
  26. 26.
    Power SR, Ferreira MS (2013) Indirect exchange and Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions in magnetically-doped graphene 49–78.  https://doi.org/10.3390/cryst3010049
  27. 27.
    Kang S, Kim Y, Kim S, Kim S (2013) The effects of heat treatment on room temperature ferromagnetism in a digitally Co doped ZnO thin film. Electron Mater Lett 9:7–11.  https://doi.org/10.1007/s13391-012-1094-2 CrossRefGoogle Scholar
  28. 28.
    Riaz S, Bashir M, Akram Raza M, Mahmood A, Naseem S (2015) Effect of calcination on structural and magnetic properties of Co-doped ZnO nanostructures. IEEE Trans Magn 51:8–11.  https://doi.org/10.1109/TMAG.2015.2443069 CrossRefGoogle Scholar
  29. 29.
    Dietl T (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287(80):1019–1022.  https://doi.org/10.1126/science.287.5455.1019 CrossRefPubMedGoogle Scholar
  30. 30.
    Ahmed MA, Azab AA, El-Khawas EH (2015) Structural, magnetic and electrical properties of Bi doped LaFeO3 nano-crystals, synthesized by auto-combustion method. J Mater Sci Mater Electron 26:8765–8773.  https://doi.org/10.1007/s10854-015-3556-4 CrossRefGoogle Scholar
  31. 31.
    Ahmed MA, Azab AA, El-Khawas EH, El Bast EA (2016) Characterization and transport properties of mixed ferrite system Mn 1−x Cu x Fe 2 O 4; 0.0 = x = 0.7. Synth React Inorg Met Nano-Metal Chem 46:376–384.  https://doi.org/10.1080/15533174.2014.988243 CrossRefGoogle Scholar
  32. 32.
    Shayegan E, Mina M, Ali S, Saeid R, Fardood T (2018) Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. J Mater Sci Mater Electron 29:1333–1340.  https://doi.org/10.1007/s10854-017-8039-3 CrossRefGoogle Scholar
  33. 33.
    Sorbiun M, Shayegan E, Ali M (2018) Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (Jaft) and comparing their photocatalytic degradation of basic violet 3. Int J Environ Res 12:29–37.  https://doi.org/10.1007/s41742-018-0064-4 CrossRefGoogle Scholar
  34. 34.
    H. & M.A.S. Inc. (2002) Particle size and strain analysis by x-ray diffraction 2Google Scholar
  35. 35.
    Azab AA, Helmy N, Albaaj S (2015) Structural and magnetic properties of La1-xCexFe1-xCrxO3 orthoferrite prepared by co-precipitation method. Mater Res Bull 66:249–253.  https://doi.org/10.1016/j.materresbull.2015.02.038 CrossRefGoogle Scholar
  36. 36.
    Dijkstra KDB, Kipping J, Mézière N (2015) Sixty new dragonfly and damselfly species from Africa (Odonata). Odonatologica 44:447–678.  https://doi.org/10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  37. 37.
    Fouda AN, Duraia ESM, Eid EA (2014) Ultra-smooth and lattice relaxed ZnO thin films. Superlattices Microstruct 73:268–274.  https://doi.org/10.1016/j.spmi.2014.05.022 CrossRefGoogle Scholar
  38. 38.
    Liu Y, Yang J, Guan Q, Yang L, Zhang Y, Wang Y, Feng B, Cao J, Liu X, Yang Y, Wei M (2009) Effects of Cr-doping on the optical and magnetic properties in ZnO nanoparticles prepared by sol-gel method. J Alloys Compd 486:835–838.  https://doi.org/10.1016/j.jallcom.2009.07.076 CrossRefGoogle Scholar
  39. 39.
    Cheng C, Xu G, Zhang H, Luo Y (2008) Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism. Mater Lett 62:1617–1620.  https://doi.org/10.1016/j.matlet.2007.09.035 CrossRefGoogle Scholar
  40. 40.
    Barczyński RJ, Szreder NA, Karczewski J, Gazda M (2014) Electronic conductivity in the SiO2-PbO-Fe2O 3 glass containing magnetic nanostructures. Solid State Ionics 262:801–805.  https://doi.org/10.1016/j.ssi.2013.10.008 CrossRefGoogle Scholar
  41. 41.
    Gandhi V, Ganesan R, Hameed H, Syedahamed A, Thaiyan M (2014) Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. J Phys Chem C 118.  https://doi.org/10.1021/jp411848t
  42. 42.
    He R, Tang B, Ton-That C, Phillips M, Tsuzuki T (2013) Physical structure and optical properties of Co-doped ZnO nanoparticles prepared by co-precipitation. J Nanoparticle Res 15.  https://doi.org/10.1007/s11051-013-2030-6
  43. 43.
    Soosen Samuel M, Bose L, George KC (2009) Optical properties of Zno nanoparticles. SB Acad Rev XVI(1&2):57–65. ISSN: 0973–7464Google Scholar
  44. 44.
    Yongsiri P, Sirisoonthorn S, Pengpat K (2015) Effect of Er2O3 dopant on electrical and optical properties of potassium sodium niobate silicate glass-ceramics. Mater Res Bull 69:84–91.  https://doi.org/10.1016/j.materresbull.2015.02.004 CrossRefGoogle Scholar
  45. 45.
    Yusub S, Narendrudu T, Suresh S, Krishna Rao D (2014) Structural investigation of vanadium ions doped Li2OPbOB2O3P2O5 glasses by means of spectroscopic and dielectric studies. J Mol Struct 1076:136–146.  https://doi.org/10.1016/j.molstruc.2014.07.055 CrossRefGoogle Scholar
  46. 46.
    Moontragoon P, Pinitsoontorn S, Thongbai P (2013) Mn-doped ZnO nanoparticles: preparation, characterization, and calculation of electronic and magnetic properties. Microelectron Eng 108:158–162.  https://doi.org/10.1016/j.mee.2013.01.061 CrossRefGoogle Scholar
  47. 47.
    Prakoso SP (2012) Synthesis and spectroscopic characterization of undoped nanocrytalline ZnO particles prepared by co-precipitation. Mater Sci Appl 3:530–537.  https://doi.org/10.4236/msa.2012.38075 CrossRefGoogle Scholar
  48. 48.
    Taabouche A, Bouabellou A, Kermiche F, Hanini F, Bouachiba Y, Grid A, Kerdjac T (2014) Properties of cobalt-doped zinc oxide thin films grown by pulsed laser deposition on glass substrates. Mater Sci Semicond Process 28:54–58.  https://doi.org/10.1016/j.mssp.2014.05.024 CrossRefGoogle Scholar
  49. 49.
    Shatnawi M, Alsmadi AM, Bsoul I, Salameh B, Alna GA, Al-dweri F, El Akkad F (2016) Magnetic and optical properties of Co-doped ZnO nanocrystalline particles. J Alloys Compd 655:244–252.  https://doi.org/10.1016/j.jallcom.2015.09.166 CrossRefGoogle Scholar
  50. 50.
    He R, Tang B (2013) Physical structure and optical properties of Co-doped ZnO nanoparticles prepared by co-precipitation.  https://doi.org/10.1007/s11051-013-2030-6
  51. 51.
    Lacroix C, Mendels P, Mila F, (eds) (2011) Introduction to frustrated magnetism: materials, experiments, theory (Springer Series in Solid-State Sciences). Springer, 2011 editionGoogle Scholar
  52. 52.
    Nogues J, Schüller IK, Nogués J, Schuller IK, Exchange bias (1999) J Magn Magn Mater 192:203.  https://doi.org/10.1016/S0304-8853(98)00266-2 CrossRefGoogle Scholar
  53. 53.
    Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. 21266–21305.  https://doi.org/10.3390/ijms141121266
  54. 54.
    Azab AA, Albaaj S (2015) Effect of grinding time on the structural and magnetic properties of ultrafine Ni0.7Zn0.3Fe2O4. J Ovonic Res 11:195–201Google Scholar
  55. 55.
    Ceylan A, Baker CC, Hasanain SK, Ismat Shah S (2006) Effect of particle size on the magnetic properties of core-shell structured nanoparticles. J Appl Phys 100:1–6.  https://doi.org/10.1063/1.2219691 CrossRefGoogle Scholar
  56. 56.
    Azab AA, El-Dek SI, Solyman S (2016) Unsual features of ferromagnetic/antiferromagnetic nanocomposites. J Alloys Compd 656:987–991.  https://doi.org/10.1016/j.jallcom.2015.10.048 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • A. A. Azab
    • 1
    Email author
  • S. A. Esmail
    • 2
  • M. K. Abdelamksoud
    • 3
  1. 1.Solid State Electronics Laboratory, Solid State Physics Department, Physical Research DivisionNational Research CentreGizaEgypt
  2. 2.Basic Science DepartmentThebes Academy of EngineeringCairoEgypt
  3. 3.Physics Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations