, Volume 11, Issue 1, pp 39–49 | Cite as

Physico-mechanical and Surface Wear Assessment of Magnesium Oxide Filled Ceramic Composites for Hip Implant Application

  • Chandramani Goswami
  • I. K. Bhat
  • Sivaiah Bathula
  • Tej Singh
  • Amar PatnaikEmail author
Original Paper


In the present study, applicability of ceramic composites as ceramic-on-ceramic hip prostheses is explored. Hence, ceramic composites containing zirconium oxide, silicon nitride, chromium oxide by varying proportion of aluminum oxide and magnesium oxide were prepared by spark plasma sintering and subsequently characterized for their physico-mechanical and tribological properties. The physico-mechanical and tribological properties of the fabricated composites were evaluated by measuring their density, void content, indentation response, fracture toughness and wear resistance respectively. The mechanical properties and wear performance of the composites are significantly improved with the addition of magnesium oxide content. Experimental results indicated that the 3 wt.% magnesium oxide based hip implant composite showed highest hardness, highest fracture toughness, highest young’s modulus with lowest wear rate. A maximum increase of approximately 44% in nanohardness, 14% in Young’s modulus, 98% in fracture toughness and 75% in wear resistance are achieved by introducing 3 wt.% magnesium oxide content. The experimental results indicated that fabricated ceramic composites will stand out as a promising material for hip implant substitution.


Ceramic composite Hip implants Ceramic-on-ceramic hip prostheses Wear 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perrichon A, Reynard B, Gremillard L, Chevalier J, Farizon F, Geringer J (2017) J Mech Behav Biomed Mater 65:600–608CrossRefGoogle Scholar
  2. 2.
    Trommer RM, Maru MM (2017) Rev Bras Ortop (English Edition) 52(3):251–259CrossRefGoogle Scholar
  3. 3.
    Napier RJ, Shimmin AJ (2016) Semin Arthroplast 27(4):235–238CrossRefGoogle Scholar
  4. 4.
    Skinner JA, Haddad FS (2017) Bone Joint J 99-B(8):993–995CrossRefGoogle Scholar
  5. 5.
    Yoshitoshi H, Yukiharu H, Taisuke S, Daigo K, Naoki I (2016) J Arthroplasty 31(6):1246–1250CrossRefGoogle Scholar
  6. 6.
    Vendittoli PA, Amzica T, Roy AG, Lusignan D, Girard J, Lavigne M (2011) J Arthroplasty 26(2):282–288CrossRefGoogle Scholar
  7. 7.
    Smeekes C, Ongkiehong B, van der Wal B, Wolterbeek R, Henseler JF, Nelissen R (2015) Int Orthop 39(4):631–638CrossRefGoogle Scholar
  8. 8.
    Lachiewicz PF, Soileau ES, Martell JM (2016) Clin Orthop Relat Res 474(2):365–371CrossRefGoogle Scholar
  9. 9.
    Roy T, Choudhury D, Ghosh S, Mamat AB, Murphy BP (2015) Ceram Int Part A 41(1):681–690CrossRefGoogle Scholar
  10. 10.
    Boutin P, Christel P, Dorlot JM, Meunier A, Roquancourt A, Blanquaert D, Herman S, Sedel L, Witvoet J (1988) J Biomed Mater Res Part A 22(12):1203–1232CrossRefGoogle Scholar
  11. 11.
    Iwakiri K, Iwaki H, Minoda Y, Ohashi H, Takaoka K (2008) Clin Orthop Relat Res 466(5):1186–1192CrossRefGoogle Scholar
  12. 12.
    Rahman HS, Choudhury D, Osman NAA, Shasmin HN, Abas WABW (2013) J Ceram Soc Jpn 121(1412):382–387CrossRefGoogle Scholar
  13. 13.
    Al-Hajjar M, Carbone S, Jennings L M, Begand S, Oberbach T, Delfosse D, Fisher J (2017) Appl Biomater 105(6):1361–1368Google Scholar
  14. 14.
    Jenabzadeh AR, Pearce SJ, Walter WL (2012) Semin Arthroplast 23(4):232–240CrossRefGoogle Scholar
  15. 15.
    Bal BS, Khandkar A, Lakshminarayanan R, Clarke I, Hoffman AA, Rahaman MN (2008) J Biomed Mater Res Part B: Appl Biomater 87(2):447–454CrossRefGoogle Scholar
  16. 16.
    Mazzocchi M, Bellosi A (2008) J Mater Sci Mater Med 19(8):2881–2887CrossRefGoogle Scholar
  17. 17.
    Mazzocchi M, Bellosi A (2008) J Mater Sci Mater Med 19(8):2889–2901CrossRefGoogle Scholar
  18. 18.
    Olofsson J, Grehk TM, Berlind T, Persson C, Jacobson S, Engqvist H (2012) Biomaterials 2:94–102Google Scholar
  19. 19.
    Pettersson M, Bryant M, Schmidt S, Engqvist H, Hall RM, Neville A, Persson C (2016) Mater Sci Eng C 62:497–505CrossRefGoogle Scholar
  20. 20.
    Garvie RC, NIcholson PS (1972) J Am Ceram Soc 55(3):152–157CrossRefGoogle Scholar
  21. 21.
    Rijal NP, Adhikari U, Khanal S, Pai D, Sankar J, Bhattarai N (2018) Mater Sci Eng B 228:18–27CrossRefGoogle Scholar
  22. 22.
    Zhao Y, Liu B, You C, Chen M (2016) Mater Des 89:573–581CrossRefGoogle Scholar
  23. 23.
    Karthik K, Dhanuskodi S, Kumar SP, Gobinath C, Sivaramakrishnan S (2017) Mater Lett 206:217–220CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Shu Y, Li W, Jiang S, Cao W, Wu Z, Wang K (2017) Ceram Int 43(2):2807–2814CrossRefGoogle Scholar
  25. 25.
    Oliver WC, Pharr GM (1992) J Mater Res 7(6):1564–1583CrossRefGoogle Scholar
  26. 26.
    Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64(9):533–538CrossRefGoogle Scholar
  27. 27.
    International Standards (2012) ISO-6474-2(en), 2012-04Google Scholar
  28. 28.
    International Standards (2017) ISO-23317 First Edition 06-15Google Scholar
  29. 29.
    Liu J, Yang Y, Hassanin H, Jumbu N, Deng S, Zuo Q, Jiang K (2016) ACS Appl Mater Interfaces 8(4):2607–2616CrossRefGoogle Scholar
  30. 30.
    Uribe J, Geringer J, Gremillard L, Reynard B (2013) Tribol Int 63:151–157CrossRefGoogle Scholar
  31. 31.
    Amaral M, Maru MM, Rodrigues SP, Gouvêa CP, Trommer RM, Oliveira FJ, Achete CA, Silva RF (2015) Tribol Int 89: 72–77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMNIT JaipurJaipurIndia
  2. 2.Applied Mechanics DepartmentMNNIT AllahabadAllahabadIndia
  3. 3.CSIR-National Physical LaboratoryNew DelhiIndia
  4. 4.Department of Mechanical EngineeringManav Bharti UniversitySolanIndia

Personalised recommendations