Advertisement

Silicon

pp 1–12 | Cite as

Reactivity of a Silsesquioxane Organofunctionalized with 4-Amino-5-Phenyl-4H-[1,2,4]-Triazole-3-thiol: Complementary Characterization and an Application to Chronoamperometric Detection of L-Dopamine

  • Daniela Silvestrini Fernandes
  • Vitor Alexandre Maraldi
  • Newton Luiz Dias Filho
  • Devaney R. do Carmo
Original Paper

Abstract

This work describes the organofunctionalization and a complementary characterization and application of an octakis(3-chloropropyl)octasilsesquioxane (1) with 4-Amino-5-Phenyl-4H-[1,2,4]-Triazole-3-Thiol (2). The functionalized silsesquioxane (3) was characterized by nuclear magnetic resonance, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. After functionalized, the silsesquioxane can interact with copper chloride and subsequently with potassium hexacyanoferrate (III) (4). The hybrid composite formed (4) was characterized by FT-IR and diffuse reflectance. The compound 4 included into a work graphite paste electrode (20% w/w) was examined for chronoamperometric determination of L-Dopamine. The modified graphite paste electrode with compound 4 showed a linear response from 2.5× 10− 5 at 4.0× 10− 4 mol L− 1. The modified graphite paste electrode with 4 showed a detection limit of 2.08× 10− 4 mol L− 1 with a relative standard deviation of ± 2% (n = 3) and amperometric sensitivity of 0.136 A mol L− 1.

Keywords

Silsesquioxanes Synthesis Triazole Characterization Chronoamperometry L-Dopamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to express their gratitude for the financial support by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP- Proc. 2012/05438-1 and 2012/11306-0) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Compliance with Ethical Standards

This study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo. Grant number 2012/05438-1 and 2012/11306-0.

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Provatas A, Matisons JG (1997) Silsesquioxanes: synthesis and applications. Trends Polym Sci 5(10):327–332Google Scholar
  2. 2.
    Zhang C, Laine RM (2000) Hydrosilylation of Allyl Alcohol with [HSiMe2OSiO1.5]8: Octa(3-hydroxypropyldimethylsiloxy) octasilsesquioxane and Its Octamethacrylate Derivative as Potential Precursors to Hybrid Nanocomposites. J Am Chem Soc 122 (29):6979–6988.  https://doi.org/10.1021/ja000318r CrossRefGoogle Scholar
  3. 3.
    Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95(5):1409–1430CrossRefGoogle Scholar
  4. 4.
    Blanco I, Abate L, Bottino FA (2014) Synthesis and thermal properties of new dumbbell-shaped isobutyl-substituted POSSs linked by aliphatic bridges. J Therm Anal Calorim 116(1):5–13.  https://doi.org/10.1007/S10973-013-3487-3 CrossRefGoogle Scholar
  5. 5.
    Blanco I, Bottino FA, Abate L (2016) Influence of n −alkyl substituents on the thermal behavior of Polyhedral Oligomeric Silsesquioxanes (POSSs) with different cage’s periphery. Thermochim Acta 623:50–57.  https://doi.org/10.1016/j.tca.2015.11.013 CrossRefGoogle Scholar
  6. 6.
    Zhao B, Cheng L, Bei Y, Wang S, Cui J, Zhu H, Li X, Zhu Q (2017) Grafted polybenzimidazole copolymers bearing polyhedral oligosilsesquioxane pendant moieties. Eur Polym J 94:99–110.  https://doi.org/10.1016/j.eurpolymj.2017.05.024 CrossRefGoogle Scholar
  7. 7.
    Dutkiewicz M, Maciejewski H, Marcieniec B (2009) Functionalization of polyhedral oligomeric silsesquioxane (POSS) via nucleophilic substitution. Synthesis 1(12):2019–2024.  https://doi.org/10.1055/s-0029-1216807 Google Scholar
  8. 8.
    Gnanasekaran D, Madhavan K, Reddy BSR (2009) Developments of Polyhedral Oligomeric Silsesquioxanes (POSS), POSS Nanocomposites and their Applications: a Review. J Sci Ind Res 68(6):437–464Google Scholar
  9. 9.
    Skaria S, Schricker SR (2010) Synthesis and characterization of Inorganic-Organic hybrid materials derived from polysilsesquioxanes (POSS). J Macromol Sci 47(5):381–391.  https://doi.org/10.1080/10601321003659440 CrossRefGoogle Scholar
  10. 10.
    Yandek GR, Moore BM, Ramirez SM, Mabry JM (2012) Effects of peripheral architecture on the properties of aryl polyhedral oligomeric silsesquioxanes. J Phys Chem: C 116(31):16755–16765.  https://doi.org/10.1021/jp3039708 Google Scholar
  11. 11.
    Blanco I, Bottino FA, Cicala G, Cozzo G, Latteri A, Recca A (2015) Synthesis and Thermal characterization of new dumbbell shaped POSS/PS nanocomposites: Influence of the symmetrical structure of the nanoparticles on the dispersion/aggregation in the polymer matrix. Polym Compos 36(8):1394–1400.  https://doi.org/10.1002/pc.23045 CrossRefGoogle Scholar
  12. 12.
    Kowalewska A (2017) Self-Assembling Polyhedral silsesquioxanes structure and properties. Curr Org Chem 21(14):1243–1264.  https://doi.org/10.2174/1385272821666170303103747 CrossRefGoogle Scholar
  13. 13.
    Phillips SH, Haddad TS, Tomczak SJ (2004) Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr Opin Solid State Mater Sci 8(1):21–29.  https://doi.org/10.1016/j.cossms.2004.03.002 CrossRefGoogle Scholar
  14. 14.
    Lu TL, Liang GZ, Kou KG (2005) Synthesis and characterization of cage octa (cyclohexyl silsesquioxane). J Mater Sci 40(18):4721–4726.  https://doi.org/10.1007/s10853-005-0839-9 CrossRefGoogle Scholar
  15. 15.
    Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110(4):2081–2173.  https://doi.org/10.1021/cr900201r CrossRefPubMedGoogle Scholar
  16. 16.
    Voronkov MG, Lavrent’yev VL (1982) Polyhedral Oligosilsesquioxanes and their homo Derivatives. Top Curr Chem 102:199–223.  https://doi.org/10.1007/3-540-11345-212 CrossRefGoogle Scholar
  17. 17.
    Li G, Wang L, Ni H, Pittman Junior CU (2001) Polyhedral Oligomeric Silsesquioxane (POSS) Polymers and Copolymers: A Review. J Inorg Organomet Polymer 11(3):123–154.  https://doi.org/10.1023/A:1015287910502 CrossRefGoogle Scholar
  18. 18.
    Marciniec B, Dutkiewicz M, Maciejewski H, Kubicki M (2008) New Effective Method of Synthesis and Structural Characterization of Octakis(3-chloropropyl)octasilsesquioxane. Organomet 27(4):793–794.  https://doi.org/10.1021/om700962x CrossRefGoogle Scholar
  19. 19.
    Pescarmona PP, Maschmeyer T (2001) Review: Oligomeric silsesquioxanes: synthesis, Characterization and Selected Applications. Aust J Chem 54(10):583–596.  https://doi.org/10.1071/CH02003 CrossRefGoogle Scholar
  20. 20.
    Su CH, Chiu YP, Teng CC, Chiang CL (2010) Preparation, characterization and thermal properties of organic–inorganic composites involving epoxy and polyhedral oligomeric silsesquioxane (POSS). J Polym Res 17 (5):673–681.  https://doi.org/10.1007/s10965-009-9355-y CrossRefGoogle Scholar
  21. 21.
    Takala M, Karttunen M, Pelto J, Salovaara P, Munter T, Honkanen M, Auletta T, Kannus K (2008) Thermal, mechanical and dielectric properties of nanostructured epoxy-polyhedral oligomeric silsesquioxane composites. Dielectr Electr Insul 15(5):1224–1235.  https://doi.org/10.1109/TDEI.2008.4656229 CrossRefGoogle Scholar
  22. 22.
    Zhao Y, Schiraldi DA (2005) Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer 46(25):11640–11647.  https://doi.org/10.1016/j.polymer.2005.09.070 CrossRefGoogle Scholar
  23. 23.
    Alfaya RVS, Fujiwara ST, Gushikem Y, Kholin YV (2004) Adsorption of metal halides from ethanol solutions by a 3-n-propylpyridiniumsilsesquioxane chloride-coated silica gel surface. J Colloid Interf Sci 269(1):32–36.  https://doi.org/10.1016/S0021-9797(03)00611-8 CrossRefGoogle Scholar
  24. 24.
    Soares LA, Da Silveira TFS, Silvestrini DR, Bicalho UO, Do Carmo DR (2013) Use of a silsesquioxane organically modified with 4-amino-5-(4-pyridyl)-4H-1,2,4-triazole-3-thiol (APTT) for adsorption of metal ions. Int J Chem 5(1):39–48.  https://doi.org/10.5539/ijc.v5n1p39 CrossRefGoogle Scholar
  25. 25.
    Dias Filho NL, Costa RM, Marangoni F (2008) Adsorption of transition-metal ions in ethanol solution by a nanomaterial based on modified silsesquioxane. Colloid Surf A 317(1-3):625–635.  https://doi.org/10.1016/j.colsurfa.2007.11.050 CrossRefGoogle Scholar
  26. 26.
    Fujiwara ST, Gushikem Y, Alfaya RVS (2001) Adsorption of FeCl3, CuCl2 and ZnCl2 on silsesquioxane 3-n-propylpyridiniumchloride polymer film adsorbed on Al2 O 3 coated silica gel. Colloid Surf A 178 (1-3):135–141.  https://doi.org/10.1016/S0927-7757(00)00685-3 CrossRefGoogle Scholar
  27. 27.
    Vieira EG, Soares IV, Da Silva NC, Perujo SD, Do Carmo DR, Dias Filho NL (2013) Synthesis and characterization of 3-[(thiourea)-propyl]-functionalized silica gel and its application in adsorption and catalysis. J Chem 37(7):1933–1943.  https://doi.org/10.1039/C3NJ00083D Google Scholar
  28. 28.
    Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Acta 440(1):36–42.  https://doi.org/10.1016/j.tca.2005.10.006 Google Scholar
  29. 29.
    Ropartz L, Morris RE, Foster DF, Cole-Hamilton DJ (2002) Phosphine-containing carbosilane dendrimers based on polyhedral silsesquioxane cores as ligands for hydroformylation reaction of oct-1-ene. J Mol Catal Chem 182:99–105. https://doi.org/S1381-1169(01)00502-7CrossRefGoogle Scholar
  30. 30.
    Pielichowski K, Njuguna J, Janowski B, Pielichowski J (2006) Polyhedral Oligomeric Silsesquioxanes (POSS)-containing Nanohybrid Polymers. Adv Polym Sci 201:225–296.  https://doi.org/10.1007/12077 CrossRefGoogle Scholar
  31. 31.
    Lin TH, Chen WZ (2010) Photo-Alignment Effect in Liquid-Crystal films containing nanoparticles and Azo-Dye. Key Eng Mat 428:276–279.  https://doi.org/10.4028/www.scientific.net/KEM.428-429.276 CrossRefGoogle Scholar
  32. 32.
    Abbenhuis HCL (2000) Advances in Homogeneous and Heterogeneous Catalysis with Metal-Containing Silsesquioxanes. Chem Eur J 6(1):25–32.  https://doi.org/10.1002/(SICI)1521-3765(20000103)6:1<25::AID-CHEM25>3.0.CO;2-Y CrossRefPubMedGoogle Scholar
  33. 33.
    Morán M, Casado CM, Cuadrado I (1993) Ferrocenyl substituted octakis(dimethylsiloxy) octasilsesquioxanes: a new class of supramolecular organometallic compounds. synthesis, characterization, and electrochemistry. Organomet 12(11):4327– 4333CrossRefGoogle Scholar
  34. 34.
    Devaux E, Rochery M, Bourbigot S (2002) Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics. Fire Mater 26(4-5):149–154.  https://doi.org/10.1002/fam.792 CrossRefGoogle Scholar
  35. 35.
    Wann DA, Less JR, Rataboul F, McCaffrey PD, Reilly AM, Robertson HE, Lickiss PD, Rankin DWH (2008) Accurate Gas-Phase Experimental Structures of Octasilsesquioxanes (Si8 O 12 X 8; X= H, Me). Organomet 27(16):4183–4187.  https://doi.org/10.1021/om800357t CrossRefGoogle Scholar
  36. 36.
    Chojnowski J, Fortuniak W, Rościszewski P, Werel W, Łukasiak J, Kamysz W, Haasa A (2006) Polysilsesquioxanes and Oligosilsesquioxanes Substituted by Alkylammonium Salts as Antibacterial Biocides. J Inorg Organomet Polym Mater 16(3): 219–230.  https://doi.org/10.1007/s10904-006-9048-5 CrossRefGoogle Scholar
  37. 37.
    Ro HW, Park ES, Soles CL, Yoon DY (2010) Structure−Property Relationships for methylsilsesquioxanes. Chem Mater 22(4): 1330–1339.  https://doi.org/10.1021/cm901771y CrossRefGoogle Scholar
  38. 38.
    Da Silveira TFS, Silvestrini DR, Bicalho UO, Do Carmo DR (2013) Voltammetric Study of a Cubic Silsesquioxane Organically Modified with Imidazole and their Subsequent Reaction with Cadmium and Hexacyanoferrate (III). Int J Electrochem Sci 8(1):872–886.  https://doi.org/10.1155/2014/695954 Google Scholar
  39. 39.
    Do Carmo DR, Silvestrini DR, Barud HS, Dias Filho NL, Bicalho UO, Soares LA (2014) A Silsesquioxane Organically Modified with 4-Amino-5-(4-pyridyl)-4H -1,2,4-triazole-3-thiol: Thermal Behavior and Its Electrochemical Detection of Sulfhydryl Compounds. J Nanomat 2014(95):1–11.  https://doi.org/10.1155/2014/695954 CrossRefGoogle Scholar
  40. 40.
    Blanco I (2018) Polyhedral Oligomeric Silsesquioxane (POSS)s in Medicine. J Nanomed 1(1):1002–1004Google Scholar
  41. 41.
    Silvestrini DR, Da Silveira TFS, Bicalho UO, Do Carmo DR (2015) Voltammetric Behavior of a Chemically Modified Silsesquioxane with 4-Amino-5-Phenyl-4h-[1,2,4]-Triazole-3-Thiol and its Application for Detection of L-Dopamine. Int J Electrochem Sci 10:2839–2858Google Scholar
  42. 42.
    Pipi ARF, Do Carmo DR (2011) Voltammetric studies of titanium (IV) phosphate modified with copper hexacyanoferrate and electro- analytical determination of N-acetylcysteine. J Appl Electrochem 41(2011):787–793.  https://doi.org/10.1007/s10800-011-0296-x CrossRefGoogle Scholar
  43. 43.
    Coşkun A (2006) The Synthesis of 4-Phenoxyphenylglyoxime and 4,4-oxybis (phenylglyoxime) and Their Complexes with cu(II), ni(II) and co(II). Turk J Chem 30 (4):461–469.https://doi.org/10.kim-06-30-4/kim-30-4-7-0601-16Google Scholar
  44. 44.
    Ibraheem H, Adel H, Ahmed A, Salih N, Salimon J, Graisa A, Farina Y, Yousif E (2010) Synthesis, characterization and antimicrobial activity of some metal ions with 2-thioacetic-5-phenyl-1,3,4-oxadiazole. J Al-Nahrain Univ 13(1):43–47CrossRefGoogle Scholar
  45. 45.
    Yousif E, Adil H, Farina Y (2010) Synthesis and characterization of some metal ions with 2-amino acetate benzothiazole. J Appl Sci Res 6(7):879–882Google Scholar
  46. 46.
    Williams RJJ, Hoppe CE, Zucchi IA, Romeo HE, Dell’erba IE, Gómez ML, Puig J, Leonardi AB (2014) Self-assembly of nanoparticles employing polymerization-induced phase separation. J Colloid Interface Sci 431:223–232.  https://doi.org/10.1016/j.jcis.2014.06.022 CrossRefPubMedGoogle Scholar
  47. 47.
    Hatakeyama T, Quinn FX (1999) Thermal analysis?: fundamentals and applications to polymer science? Wiley, Aulnay-sous-BoisGoogle Scholar
  48. 48.
    Zhang Z, Liang G, Lu T (2007) Synthesis and characterization of cage octa(aminopropylsilsesquioxane). J Appl Polymer Sci 103(4):2608–2614.  https://doi.org/10.1002/app.25304 CrossRefGoogle Scholar
  49. 49.
    Do Carmo DR, Guinesi LS, Dias Filho NL, Stradiotto NR (2004) Thermolysis of octa(hydridodimethylsiloxyl)octasilsesquioxane in pyridine media and subsequent toluidine blue O adsorption. Appl Surf Sci 235(4):449–459.  https://doi.org/10.1016/j.apsusc.2004.02.061 CrossRefGoogle Scholar
  50. 50.
    Do Carmo DR, Paim LL, Dias Filho NL, Stradiotto NR (2007) Preparation, characterization and application of a nanostructured composite: Octakis (cyanopropyldimethylsiloxy)octasilsesquioxane. Appl Surf Sci 253(7):3683–3689.  https://doi.org/10.1016/j.apsusc.2006.07.080 CrossRefGoogle Scholar
  51. 51.
    Do Carmo DR, Dias Filho NL, Stradiotto NR (2004) Synthesis and preliminary characterization of octakis(chloropropyldimethylsiloxy)octasilsesquioxane. Mater Res 7(3):499–504.  https://doi.org/10.1590/S1516-14392004000300020 CrossRefGoogle Scholar
  52. 52.
    Ayers JB, Waggoner WH (1971) Synthesis and properties of two series of heavy metal hexacyanoferrates. J Inorg Nucl Chem 33(3):721–733.  https://doi.org/10.1016/0022-1902(71)80470-0 CrossRefGoogle Scholar
  53. 53.
    Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95(5):1409–1430CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Daniela Silvestrini Fernandes
    • 1
  • Vitor Alexandre Maraldi
    • 1
  • Newton Luiz Dias Filho
    • 2
  • Devaney R. do Carmo
    • 1
  1. 1.Departamento de Física e QuímicaUniversidade Estadual Paulista “Júlio de Mesquita Filho” – UNESPIlha SolteiraBrazil
  2. 2.Departamento de Engenharia MecânicaUniversidade Estadual Paulista “Júlio de Mesquita Filho” – UNESPIlha SolteiraBrazil

Personalised recommendations