Advertisement

Silicon

, Volume 11, Issue 1, pp 77–83 | Cite as

Solar Cells Fabricated in Upgraded Metallurgical Silicon, Obtained Through Vacuum Degassing and Czochralski Growth

  • Francisco Chagas MarquesEmail author
  • Andresa Deoclidia Soares Cortes
  • Paulo Roberto Mei
Original Paper
  • 52 Downloads

Abstract

Upgraded metallurgical grade silicon (UMG-Si) was obtained through metallurgical methods using two steps. First, metallurgical grade silicon was purified by the vacuum degassing technique using an electron-beam system. An ingot was then produced through Czochralski (CZ) growth. This later process was also used to reduce impurities through the segregation phenomenon in the CZ technique, producing a material of 99.9993% purity, one order of magnitude less pure than the minimum required for solar grade silicon. Solar cells fabricated with polycrystalline silicon with that amount of impurities are of low efficiency. Thus, the CZ technique was also adopted to supply monocrystalline silicon in order to avoid additional defects due to the grain boundary of polycrystalline wafers. Adopting this procedure, we produced solar cells with an efficiency of 13%, using a very simple fabrication process.

Keywords

Czochralski growth Upgraded metallurgical grade silicon Solar cells Vacuum degassing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Brazilian research finance agencies FAPESP (Grant # 2012/10127-5), CNPq (Grant # 407887/2013-0), INES/INCT (Grant # 465423/2014-0) and CAPES. We are also indebted to RIMA Industrial S/A for supplying MG-Si and for the CZ growth.

References

  1. 1.
    Khattak CP, Joyce DB, Schmid F (2002) A simple process to remove boron from metallurgical grade silicon. Sol Energy Mater Sol Cells 74:77–89CrossRefGoogle Scholar
  2. 2.
    Pizzini S (2010) Towards solar grade silicon: challenges and benefits for low cost photovoltaics. Sol Energy Mater Sol Cells 94:1528–1533CrossRefGoogle Scholar
  3. 3.
    Pizzini S (1982) Solar grade silicon as a potential candidate material for low-cost terrestrial solar-cells. Sol Energy Mater 6:253–297CrossRefGoogle Scholar
  4. 4.
    Woditsch P, Koch W (2002) Solar grade silicon feedstock supply for PV industry. Sol Energy Mater Sol Cells 72:11–26CrossRefGoogle Scholar
  5. 5.
    Yuge N, Abe M, Hanazawa K, Baba H, Nakamura N, Kato Y, Sakaguchi Y, Hiwasa S, Aratani F (2001) Purification of metallurgical-grade silicon up to solar grade. Prog Photovolt 9(3):203–209CrossRefGoogle Scholar
  6. 6.
    Zheng P, Rougieux FE, Samundsett C, Yang X, Wan Y, Degoulange J, Einhaus R, Rivat P, Macdonald D (2016) Upgraded metallurgical-grade silicon solar cells with efficiency above 20%. Appl Phys Lett 108:122103CrossRefGoogle Scholar
  7. 7.
    Zheng P, Rougieux FE, Zhang X, Degoulange J, Einhaus R (2017) 21.1% UMG silicon solar cells. IEEE J Photovoltaics 7(1):58–61CrossRefGoogle Scholar
  8. 8.
    Li Y, Wu J, Ma W, Yang B (2015) Boron removal from metallurgical grade silicon using a refining technique of calcium silicate molten slag containing potassium carbonate. Silicon 7:247–252CrossRefGoogle Scholar
  9. 9.
    Wu J, Li Y, Ma W, Liu K, Wei K, Xie K, Yang B, Dai Y (2014) Impurities removal from metallurgical grade silicon using gas blowing refining techniques. Silicon 6:79–85CrossRefGoogle Scholar
  10. 10.
    Wu J, Zhou Y, Ma W, Xu M, Yang B (2017) Synergistic separation behavior of boron in metallurgical grade silicon using a combined slagging and gas blowing refining technique. Metall Mater Trans B 48:22–26CrossRefGoogle Scholar
  11. 11.
    Wu J, Wang F, Ma W, Lei Y, Yang B (2016) Thermodynamics and kinetics of boron removal from metallurgical grade silicon by addition of high basic potassium carbonate to calcium silicate slag. Metall Mater Trans B 47:1796–1803CrossRefGoogle Scholar
  12. 12.
    Mei PR, Moreira SP, Cardoso E, Côrtes ADS, Marques FC (2012) Purification of metallurgical silicon by horizontal zone melting. Sol Energy Mater Sol Cells 98:233–239CrossRefGoogle Scholar
  13. 13.
    Mei PR, Moreira SP, Côrtes ADS, Silva DS, Marques FC (2012) Back diffusion during zone melting of metallurgical silicon. Defect Diffus Forum 326–328:43–47CrossRefGoogle Scholar
  14. 14.
    Côrtes ADS, Silva DS, Viana GA, Motta EF, Zampieri PR, Mei PR, Marques FC (2013) Solar cells from upgraded metallurgical-grade silicon purified by metallurgical routes. J Renew Sustain Energy 5:023129–1-9CrossRefGoogle Scholar
  15. 15.
    Safarian J, Tranell G, Tangstad M (2012) Processes for upgrading metallurgical grade silicon to solar grade silicon. Energy Procedia 20:88–97CrossRefGoogle Scholar
  16. 16.
    Braga AFB, Zampieri PR, Bacchin JM, Mei PR (2008) New processes for the production of solar-grade polycrystalline silicon: a review. Sol Energy Mater Sol Cells 92:418–424CrossRefGoogle Scholar
  17. 17.
    Pires JCS, Otubo J, Braga AFB, Mei PR (2005) The purification of metallurgical grade silicon by electron beam melting. J Mater Process Technol 169:16–20CrossRefGoogle Scholar
  18. 18.
    Marques FC, Urdanivia J, Chambouleyron IE (1998) A simple technology to improve crystalline silicon solar cell efficiency. Sol Energy Mater Sol Cells 52:285–292CrossRefGoogle Scholar
  19. 19.
    Silva DS, Côrtes ADS, Oliveira MH, Motta EF, Viana GA, Mei PR, Marques FC (2011) Application of amorphous carbon based materials as antireflective coatings on crystalline silicon solar cells. J Appl Phys 110(4):043510–043510-8CrossRefGoogle Scholar
  20. 20.
    Marques FC (1998) Sprayed SnO2 antireflective coating on textured silicon surface for solar cell applications. IEEE Trans Electron Devices 45(7):1619–1622CrossRefGoogle Scholar
  21. 21.
    Marques FC, Chambouleyron I (1986) Surface barrier SnO2/SiO2/c-Si(n) solar cells: optimization of the fabrication process. Solar Cells 17(2/3):167–181CrossRefGoogle Scholar
  22. 22.
    Bathey BR, Cretella MC (1982) Review solar-grade silicon. J Mater Sci 17:3077–3096CrossRefGoogle Scholar
  23. 23.
    Nakajima K, Usami N (2009) Advances in materials research—crystal growth of Si for solar cells. Springer, BerlinGoogle Scholar
  24. 24.
    Hopkins RH, Rohatgi A (1986) Impurity effects in silicon for high efficiency solar cells. J Cryst Growth 75:57–79CrossRefGoogle Scholar
  25. 25.
    Blakers AW, Wang A, Milne AM, Zhao J, Green MA (1989) 22.8% efficient silicon solar cell. Appl Phys Lett 55:1363– 1365CrossRefGoogle Scholar
  26. 26.
    Green MA (2015) The passivated emitter and rear cell(PERC): from conception to mass production. Sol Energy Mater Sol Cells 143:190–197CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Física “Gleb Wataghin”Universidade Estadual de Campinas, UNICAMPCampinasBrazil
  2. 2.Faculdade de Engenharia MecânicaUniversidade Estadual de Campinas, UNICAMPCampinasBrazil

Personalised recommendations