Skip to main content
Log in

Field Enhancement in Metamaterial Split Ring Resonator Aperture Nano-Antenna with Spherical Nano-Particle Arrangement

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, we present a split ring resonator (SRR) for a nano-aperture antenna for biomedical and spectroscopy applications. We have shown that while the graphene coat layer is carried out to the structure, we are modifying a reconfigurable nano-antenna with more transmittance. The prototyped structure is modeled with the finite difference time domain (FDTD) method by the CST microwave studio and an 80nm thick SiN layer is selected as a substrate with refractive index of 1.98 and the Palik model is used for the gold layer with the thickness of 30nm. Here, we have selected the single graphene layer for a coat with the thickness of 1nm. Here, the sensitivity of the antenna is studied for the incident wave in X and Y directions and we show the dependency of transmittance in the direction of the incident wave. The SiO2 nano-spherical particle is used in various chains formations for improving the transmittance in antenna and improve enhancement and controlling of the electric field (E-field), in X and Y directions. We have checked various nanomaterial effects on the resonances. This nanoantenna is useful for spectroscopy and some medical applications such as detection of skin cancer, which has affected nanoantenna resonance frequency similar to the nanospherical array in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin X-R, Lu Y, Zheng H, Lee Y, Rhee JY, Kim KW, Jang WH (2011) Plasmonic electromagnetically-induced transparency in metamaterial based on second-order plasmonic resonance. Optics Commun 284(19):4766–4768

    Article  CAS  Google Scholar 

  2. Reed JC, Zhu H, Zhu AY, Li C, Cubukcu E (2012) Graphene-enabled silver nanoantenna sensors. Nano Lett 12(8):4090–4094

    Article  CAS  Google Scholar 

  3. Silambarasan K, Kumar AVN, Sivakumar C, Joseph J (2014) Formation of nanogap Au–polysilsesquioxane 1D chains for SERS application. RSC Adv 4(75):40003–40007

    Article  CAS  Google Scholar 

  4. Hosseinbeig A, Pirooj A, Zarrabi FB (2017) A reconfigurable subwavelength plasmonic fano nano-antenna based on split ring resonator. J Magn Magn Mater 423:203–207

    Article  CAS  Google Scholar 

  5. Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and negative refractive index. Science 305(5685):788–792

    Article  CAS  Google Scholar 

  6. Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455(7211):376

    Article  CAS  Google Scholar 

  7. Maas R, Mann SA, Sounas DL, Alu A, Garnett EC, Polman A (2016) Generalized antireflection coatings for complex bulk metamaterials. Phys Rev B 93(19):195433

    Article  Google Scholar 

  8. Bala BD, Rahim MKA, Murad NA (2014) Complementary electric-LC resonator antenna for WLAN applications. Appl Phys A 117(2):635–639

    Article  CAS  Google Scholar 

  9. Casse BDF, Lu WT, Huang YJ, Gultepe E, Menon L, Sridhar S (2010) Super-resolution imaging using a three-dimensional metamaterials nanolens. Appl Phys Lett 96(2):023114

    Article  Google Scholar 

  10. Han B, Dong B, Nan J, Zhong M (2015) Tunable bandwidth of pass-band metamaterial filter based on coupling of localized surface plasmon resonance. Opt Mater 50:162–166

    Article  CAS  Google Scholar 

  11. Faraji M, Moravvej-Farshi MK, Yousefi L (2015) Tunable THz perfect absorber using graphene-based metamaterials. Opt Commun 355:352–355

    Article  CAS  Google Scholar 

  12. Ni B, Huang L, Ding J, Li G, Chen X, Lu W (2013) The collective property of enhanced transmission through compound metal periodic arrays of Subwavelength apertures. Opt Commun 298:237–241

    Article  Google Scholar 

  13. Adato R, Aksu S, Altug H (2015) Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy. Materials Today

  14. Turkmen M, Aksu S, Çetin AE, Yanik AA, Altug H (2011) Multi-resonant metamaterials based on UT-shaped Nano-aperture antennas. Opt Express 19(8):7921–7928

    Article  CAS  Google Scholar 

  15. Cetin AE, Kaya S, Mertiri A, Aslan E, Erramilli S, Altug H, Turkmen M (2015) Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures. Photonics and Nanostructures-Fundamentals and Applications

  16. Cetin AE, Turkmen M, Aksu S, Etezadi D, Altug H (2015) Multi-resonant compact nanoaperture with accessible large nearfields. Appl Phys B 118(1):29–38

    Article  CAS  Google Scholar 

  17. Cetin AE, Aksu S, Turkmen M, Etezadi D, Altug H (2015) Theoretical and experimental analysis of subwavelength bowtie-shaped antennas. J Electromagn Waves Appl 29(13):1686–1698

    Article  Google Scholar 

  18. Koenderink AF, Polman A (2006) Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains. Phys Rev B 74(3):033402

    Article  Google Scholar 

  19. Liu Y, Xu J, Zhong W, Zhang X (2012) Second-harmonic generation in integrated nanosphere chains. J Opt 14(10):105203

    Article  Google Scholar 

  20. Ahmadivand A, Golmohammadi S (2013) Electro-optic wavelength filtering device for plasmon waveguides based on ordered arrays of Au nanorings. Optik-Int J Light Electron Opt 124(17):2743–2745

    Article  CAS  Google Scholar 

  21. Bazgir M, Naser-Moghadasi M, Zarrabi FB, Arezomand AS, Heydari S (2017) Nano particle implementation in nano loop antenna for energy harvesting application and light trapping. Optik-Int J Light Electron Opt 132:127–133

    Article  CAS  Google Scholar 

  22. Heeg S, Fernandez-Garcia R, Oikonomou A, Fr Schedin, Narula R, Maier SA, Vijayaraghavan A, Reich S (2012) Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene. Nano Lett 13(1):301–308

    Article  Google Scholar 

  23. Schedin F, Lidorikis E, Lombardo A, Kravets VG, Geim AK, Grigorenko AN, Novoselov KS, Ferrari AC (2010) Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4(10):5617–5626

    Article  CAS  Google Scholar 

  24. Maier SA, Kik PG, Atwater HA (2003) Optical pulse propagation in metal nanoparticle chain waveguides. Phys Rev B 67(20):205402

    Article  Google Scholar 

  25. Zarrabi FB, Naser-Moghadasi M, Heydari S, Maleki M, Arezomand AS (2016) Cross-slot nano-antenna with graphene coat for bio-sensing application. Opt Commun 371:34–39

    Article  CAS  Google Scholar 

  26. Pickwell E, Cole BE, Fitzgerald AJ, Wallace VP, Pepper M (2004) Simulation of terahertz pulse propagation in biological systems. Appl Phys Lett 84(12):2190–2192

    Article  CAS  Google Scholar 

  27. Woodward RM, Cole BE, Wallace VP, Pye RJ, Arnone DD, Linfield EH, Pepper M (2002) Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys Med Biol 47(21):3853

    Article  Google Scholar 

  28. Buzug TM, Schumann S, Pfaffmann L, Reinhold U, Ruhlmann J (2006) Functional infrared imaging for skin-cancer screening. In: 28th annual international conference of the IEEE on engineering in medicine and biology society, 2006. EMBS’06. IEEE, pp 2766–2769

  29. Seddon AB (2013) Mid-infrared (IR)–A hot topic: the potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Phys Status Solidi (B) 250(5):1020–1027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Authors would like to thank Navid P. Gandji (Michigan Technological University) for his helpful discussions and co-operations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdows B. Zarrabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novin, S.N., Zarrabi, F.B., Bazgir, M. et al. Field Enhancement in Metamaterial Split Ring Resonator Aperture Nano-Antenna with Spherical Nano-Particle Arrangement. Silicon 11, 293–300 (2019). https://doi.org/10.1007/s12633-018-9854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9854-8

Keywords

Navigation