, Volume 11, Issue 1, pp 85–104 | Cite as

Reverse Precipitation Synthesis of ≤ 10 nm Magnetite Nanoparticles and Their Application for Removal of Heavy Metals from Water

  • Mahmoud F. ZawrahEmail author
  • El Sayed E. El Shereefy
  • Ahmed Y. Khudir
Original Paper


Fe3O4 nanoparticles having size ≤ 10nm were prepared by reverse co-precipitation method. This is a rapid, simple, and cost-effective (only one Fe-salt is used) synthesis route in only one step reaction without applying temperature, surfactants or inert gases as compared with previously published routes. The prepared nano particles were investigated by X-ray (XRD), transmission electron microscope (TEM), thermal gravimetric analysis (TGA), fourier transform infrared (FT-IR) and vibrating sample magnetometer (VSM). These nanoparticles were appraised as an adsorbents for eliminating Pb(II), Cu(II), and Zn(II) from water. The equilibrium data was analyzed by Langmuir, Freundlich, and (D-R) isotherms. Pseudo-second-order, Elovich and intra-particle diffusion models were used to study the kinetics of reaction. Adsorbent cycling was performed to examine its stability and reusability. The results revealed that the adsorption efficiency trend was Pb>Cu>Zn at pH 5.5, 6.5 and 6, respectively and influenced by ionic radius of cations. The maximum suitable mass of adsorbent was 200mg, after which the agglomeration occurred and adsorption efficiency decreased. It is indicated that the adsorption process was well fitted to Langmuir. Also, the adsorption followed the pseudo-second-order-model for Pb(II) and Zn(II), but Elovich for Cu(II). Adsorbent retained about 90% with Pb(II), 40% with Cu(II), and 30% with Zn(II) of its initial sorption efficiency after 3 cycles.


Magnetite nanoparticles Synthesis Characterization Adsorption capacity Adsorption efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown KK (2002) Environmental data water scarcity: Forecasting the future with spotty data. Science 297:926–927PubMedGoogle Scholar
  2. 2.
    Schwarzenbach RP, Egli T, Hofstetter TB, Von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136Google Scholar
  3. 3.
    Al-Musharsfi SK, Mahmoud IY, Al-Bahry SN (2013) Heavy metal poll-ution from treated sewage effluent. APCBEE Procedia 5:344–348Google Scholar
  4. 4.
    Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contami-nation of air, water and soils by trace metals. Nature 333:134–139PubMedGoogle Scholar
  5. 5.
    Rozada F, Otero M, Moran A, Carcia AL (2008) Adsorption of heavy metals onto sewage sludge derived materials. Bio Res Technol 99(14):6332–6338Google Scholar
  6. 6.
    Reddad Z, Gerente C, Andres Y, Thibault J, Le Cloirec P (2003) Cadmium and Lead adsorption by a natural polysaccharide in MF membrane reactor: experimental analysis and modeling. Water Res 37:3983–3991PubMedGoogle Scholar
  7. 7.
    Fan HJ, Shu HY, Yang HS, Chen WC (2006) Characteristics of landfill leachates in central Taiwan. Sci Total Environ 361:25– 37PubMedGoogle Scholar
  8. 8.
    Chen JP, Wang W, (2000) Removing copper, zinc and lead ion by granular activated carbon in pretreated fixed-bed columns. Sep Technol 19:157–167Google Scholar
  9. 9.
    Gupta VK, Suhas (2009) An application of low-cost adsorbents for dye removal, a review. J Environ Manag 90:2313–2342Google Scholar
  10. 10.
    Gupta VK, Rastogi A, Saini V, Jain N (2006) Bio-sorption of copper (II) from aqueous solutions by Spirogyra species. J Colloid Interface Sci 296(1):59–63PubMedGoogle Scholar
  11. 11.
    Xu M, Zhang Y, Zhang Z, Shen Y, Zhao M, Pan G et al (2011) Study on the adsorption of Ca2+, Cd2+ and Pb2+ by magnetic Fe3O4 yeast treated with EDTA dianhydride. Chem Eng J 168(2):737–745Google Scholar
  12. 12.
    Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667Google Scholar
  13. 13.
    Gupta VK, Ali I, Saini VK (2007) Defluoridation of wastewater using waste carbon slurry. Water Res 41(15):3307–3316PubMedGoogle Scholar
  14. 14.
    Saleh TA, Gupta VK (2012) Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ Sci Pollut Res 19(4):1224–1228Google Scholar
  15. 15.
    Lechner MD, Machtle W (1999) Characterization of nanoparticles. Macromol Symp 145:1–7Google Scholar
  16. 16.
    Zhang L, Fang M (2010) Nano materials in pollution trace detection and environmental improvement. Nano Today 5(2):128–142Google Scholar
  17. 17.
    Xu P, Zeng GM, Huangetal DL (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10PubMedGoogle Scholar
  18. 18.
    Warner CL, Chouyyok W, Mackie KE et al (2012) Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent. Langmuir 28(8):3931–3937PubMedGoogle Scholar
  19. 19.
    Karatapanis AE, Petrakis DE, Stalikas CD (2012) A layered magnetic iron/iron oxide nanoscavenger for the analytical enrichment of ng-L-1 concentration levels of heavy metals from water. Analytica Chimica Acta 726:22–27PubMedGoogle Scholar
  20. 20.
    Yang H, Tian Z, Wang J, Yang S (2012) A magnetic resonance imaging nanosensor for Hg (II) based on thymidine functionalized super magnetic iron oxide nanoparticles. Sensors and Actuators B 161(1):429–433Google Scholar
  21. 21.
    Gleiter H, Marquardt P (1984) Nanocrystalline structures: an approach to new materials Z. Metallkd 75:263–267Google Scholar
  22. 22.
    Hu F, Wei L, Zhou Z, Ran Y, Li Z, Gao M (2006) Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater 18:2553–2556Google Scholar
  23. 23.
    Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium ion battery applications. Nat Mater 5:567–573PubMedGoogle Scholar
  24. 24.
    Wang W, Howe JY, Gu B (2008) Structure and morphology evolution of hematite (α-Fe2O3) nanoparticles in forced hydrolysis of ferric chloride. J Phys Chem C 112:9203–9208Google Scholar
  25. 25.
    Xie J, Chen K, Lee H-Y, Xu C, Hsu AR, Peng S, Chen X, Sun S (2008) Ultra-small c (RGDyK) coated Fe3O4 nanoparticles and their specific targeting to integrin α v β3-rich tumor cells. J Am Chem Soc 2130:7542–7543Google Scholar
  26. 26.
    Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239Google Scholar
  27. 27.
    Signorini L, Pasquini L, Savini L, Carboni R, Boscherini F, Bonetti E, Giglia A, Pedio M, Mahne N, Nannarone S (2003) Size-dependent oxidation in iron/iron oxide core-shell nanoparticles, vol 68, p 195423Google Scholar
  28. 28.
    Klein DL, McEuen PL, Katari JEB, Roth R, Alivisatos AP (1996) An approach to electrical studies of single nanocrystals, Appl. Phys Lett 68:2574–2576Google Scholar
  29. 29.
    Liu L, Kou HZ, Mo W, Liu H, Wang Y (2006) Surfactant-assisted synthesis of α-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. J Phys Chem B 110(33):15218–15223PubMedGoogle Scholar
  30. 30.
    Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity, BiointerphasesGoogle Scholar
  31. 31.
    Abdelaal HM, Zawrah MF, Harbrecht B (2014) Facile one-pot fabrication of hollow porous silica nanoparticles. Chem Eur J 20(3):673–677PubMedGoogle Scholar
  32. 32.
    Sadek HEH, Khattab RM, Gaber AA, Zawrah MF (2014) Nano Mg1−xNixAl2O4 Spinel Pigments for Advanced Applications. Spectrochimica Acta : Molecular and Biomolecular Spectroscopy 125 (5):353–358PubMedGoogle Scholar
  33. 33.
    El Rafie A, Zawrah MF (2014) Effect of alkali concentration and reaction time on the morphology of ZnO nano-microparticles prepared by hydrothermal method. J Ceram Sci Tech 05(03):193–198Google Scholar
  34. 34.
    Zawrah MF, Zayed HA, Essaway RA, Abdel Fattah AH, Taha MA (2013) Preparation by mechanical alloying, characterization and sintering of Cu–20 wt-% Al2O3 nanocomposites. Mater Des 46:485–490Google Scholar
  35. 35.
    Zawrah MF, Ahmed H, El-Baly NE (2012) Fabrication of Al2O3-20 Vol% Al nanocomposite powder using high energy milling. Mater Res Bull 47:655–661Google Scholar
  36. 36.
    Zawrah MF, Zayed MA, Ali MRK (2012) Synthesis and characterization of SiC and SiC/Si3 N 4 composite nano powders from waste material. J Hazard Mater 227–228(15):250–256PubMedGoogle Scholar
  37. 37.
    Suri J, Shaw LL, Zawrah MF (2011) Tailoring the relative Si3N4 and SiC contents in Si3 N 4/SiC nanopowders through carbothermic reduction and nitridation of silica fume, Int J Appl Ceram Technol, 1–13Google Scholar
  38. 38.
    Zawrah MF, Shehata AB, Kishar EA, Yamani RN (2011) Synthesis, hydration and sintering of calcium aluminate nanopowder for biomedical applications. Comptes Rendus Chimie 14:611–618Google Scholar
  39. 39.
    Suri J, Shaw LL, Zawrah MF (2011) Synthesis of carbon-free Si3N4/SiC nanopowders using silica fume. Ceram Int 37:3477–3487Google Scholar
  40. 40.
    Zawrah MF, Abdel El-Moez SI (2011) Antimicrobial activities of gold nanoparticles against major foodborne pathogens. Life Sci J 8(4):26–30Google Scholar
  41. 41.
    Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nanotoday 1:44–48Google Scholar
  42. 42.
    Zahn M (1980) Transaction on magnetite. IEEE 16(2):275Google Scholar
  43. 43.
    Nishio K, Ikeda M, Gokon N, Tsubouchi S et al (2007) Preparation of size-controlled (30?100 nm) magnetite nanoparticles for biomedical applications. J Magn Magn Mater 310:2408– 2410Google Scholar
  44. 44.
    Sudimack JB, Lee RJ (2000) Targeted drug delivery via the floated receptor. Adv Drug Deliv Rev 41:147–162PubMedGoogle Scholar
  45. 45.
    Jordan A, Scholz R, Maier-hauff K, Johannsen M et al (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater 22:5118–126Google Scholar
  46. 46.
    Oskam G (2006) Metal oxide nanoparticles: synthesis, characterization and application. J Sol-Gel Sci Techn 37:161–164Google Scholar
  47. 47.
    Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides – a review. Int J Eng Sci Technol 2(8):127–146Google Scholar
  48. 48.
    Xu XL, Guo JD, Wang YZ (2000) A novel technique by the citrate pyrolysis for preparation of iron oxide nanoparticles. Mater Sci Eng B 77:207Google Scholar
  49. 49.
    Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205PubMedGoogle Scholar
  50. 50.
    Ciobanu CS, Iconaru SL, Gyorgy E et al (2012) Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique. Chem Cent J 6(1):17PubMedPubMedCentralGoogle Scholar
  51. 51.
    Ahmed N, Michelin-Jamois M, Fessi H, Elaissari A (2012) Modified double emulsion process as a new route to prepare submicron biodegradable magnetic/polycaprolactone particles for in vivo theranostics. Soft Matter 8(8):2554Google Scholar
  52. 52.
    Bae H, Ahmad T, Rhee I, Chang Y, Jin S-U, Hong S (2012) Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging. Nanoscale Res Lett 7(1):44PubMedPubMedCentralGoogle Scholar
  53. 53.
    Wang X, Zhou J, Miao C, Wang Y, Wang H, Ma C, Sun S (2012) Synthesis and size control of ferric oxide nanoparticles via a hydrothermal stripping route. J Nanoparticle Res 14(4): 783Google Scholar
  54. 54.
    Darbandi M, Stromberg F, Landers J, Reckers N, Sanyal B, Keune W, Wende H (2012) Nanoscale size effect on surface spin canting in iron oxide nanoparticles synthesized by the microemulsion method. J Phys D Appl Phys 45(19):195001Google Scholar
  55. 55.
    Odenbach S, Thurm S (2002) Magnetoviscous effects in ferrofluids. NP 594:185–201Google Scholar
  56. 56.
    Bychko I (2012) TPR Study of core-shell Fe@Fe3O4 nanoparticles supported on activated carbon and carbon nanotubes. Adv Mater Phys Chem 2(1):17–22Google Scholar
  57. 57.
    Walter D (2006) Characterization of synthetic hydrous hematite pigments, Thermochim ActaGoogle Scholar
  58. 58.
    Prakash A, McCormick AV, Zachariah MR (2004) Aero-Sol-Gel synthesis of nanoporous iron-oxide particles: A potential oxidizer for nanoenergetic materials. Chem Mater 16:1466–1471Google Scholar
  59. 59.
    Karunaratne V, Priyadharshana N, Gunasekara G, Kottegoda S, Senaratne A (2012) Process for preparation of nanoparticles from magnetite ore, US20120056121 A1Google Scholar
  60. 60.
    Baumgartner J, Bertinetti L, Widdrat M, Hirt AM, Faivre D (2013) Formation of magnetite nanoparticles at low temperature: From superparamagnetic to stable single domain particles, Plots One.
  61. 61.
    Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 94:3520–3528Google Scholar
  62. 62.
    Mahmed N, Heczko O, Söderberg O, Hannula SP (2011) Room temperature synthesis of magnetite (Fe3δO4) nanoparticles by a simple reverse co-precipitation method. IOP Conf Ser Mater Sci Eng 18:032020. Google Scholar
  63. 63.
    Maity D, Agrawal DC (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308:46– 55Google Scholar
  64. 64.
    Peng S, Wang C, Xie J, Sun S (2006) Synthesis and stabilization of monodisperse Fe nanoparticles. J Am Chem Soc 128:10676–10677PubMedGoogle Scholar
  65. 65.
    Ge J, Hu Y, Biasini M, Dong C, Guo J, Beyermann W, Yin Y (2007) One-step synthesis of highly water-soluble magnetite colloidal nanocrystals. Chem Eur J 13:7153–7161PubMedGoogle Scholar
  66. 66.
    Lu X, Niu M, Qiao R, Gao M (2008) Superdispersible PVP-coated Fe3O4 nanocrystalsprepared by a one-pot reaction. J Phys Chem B 112(46):14390–14394PubMedGoogle Scholar
  67. 67.
    Li Z, Chen H, Bao H, Gao M (2004) One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mater 16:1391–1393Google Scholar
  68. 68.
    Vargas J, Zysler R (2005) Tailoring the size in colloidal iron oxide magnetic nanoparticles. Nanotechnology 16:1474–1476Google Scholar
  69. 69.
    Bandhu A, Mukherjee S, Acharya S, Modak S, Brahma S, Das D, Chakrabarti PK (2009) Dynamic magnetic behavior and Mössbauer effect measure-ements of magnetite nanoparticles prepared by a new technique in the co-precipitation method. Solid State Commun 149:1790–1794Google Scholar
  70. 70.
    Ozkaya T, Toprak M, Baykal A, Kavas H, Koseoglu Y, Aktas B (2009) Synthesis of Fe3O4 nanoparticles at 100 C and its magnetic characterization. J Alloys Compd 472:18–23Google Scholar
  71. 71.
    Alibeigi S, Vaezi MR (2008) Phase transformation of iron oxide nano-particles by varying the molar ratio of Fe2+: Fe3+. Chem Eng Technol 31:1591Google Scholar
  72. 72.
    Tamez C, Hernandez R, Parsons J (2015) Removal of Cu(II) and Pb(II) from aqueous solution using engineered iron oxide nanoparticles, Microchemical Journal.
  73. 73.
    Beyaz S, Kockara H, Tanrisever T (2009) Simple synthesis of super-paramagnetic magnetite nanoparticles and ion effect on magnetic fluids. J Optoelectron Adv Mater 1(3):447–450Google Scholar
  74. 74.
    Mizukoshi Y, Shuto T, Masahashi N, Tanabe S (2009) Preparation of super-paramagnetic magnetite nanoparticles by reverse precipitation method: contribution of sonochemically generated oxidants. Ultrason Sonochem 16:525PubMedGoogle Scholar
  75. 75.
    Sdiri A, Higashi T, Hatta T, Jamoussi F, Tase N (2011) Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems. J Chem Eng 172:37–46Google Scholar
  76. 76.
    Waldron RD (1999) Infrared spectra of ferrites. Phys Rev 99:1727–1735Google Scholar
  77. 77.
    Ma M, Zhang Y, Yu W, Shen HY, Zhang HQ, Gu N (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf Physicochem Eng Asp 212:219–226Google Scholar
  78. 78.
    Ko D, Cheung C, Keith K, Choy C, GMcKay PJ (2004) Sorption equilibria of metal ions on bone char. Chemosphere 54:273– 281PubMedGoogle Scholar
  79. 79.
    Zhou Y, Nie H, Branford-White C, Zhu L (2009) Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with a keto-glutaric acid. J Colloid InterfSci 330:29–37Google Scholar
  80. 80.
    Hall K, Eagleton L, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5(2):212–223Google Scholar
  81. 81.
    Huang C, Chung Y, Liou M (1996) Adsorption of Cu(II) and Ni(II) by pelletized biopolymer. J Hazard Mater 45:265–277Google Scholar
  82. 82.
    Ozay O, Ekici S, Baran Y, Aktas N, Sahiner N (2009) Removal of toxic metal ions with magnetic hydrogels. Water Res 43:4403–4411PubMedGoogle Scholar
  83. 83.
    Wang S, Gong W, Liu X, Yao Y, Gao B, Yue Q (2007) Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep PurifTechnol 58:17–23Google Scholar
  84. 84.
    Hu J, Zhao D, Wang X (2011) Removal of Pb(II) and Cu(II) from aqueous solution using multiwalled carbon nanotubes/iron oxide magnetic comp-osites. Water Sci Technol 63:917–923PubMedGoogle Scholar
  85. 85.
    Phuengprasop T, Sittiwong J, Unob F (2011) Removal of heavy metal ions by iron oxide coated sewage sludge. J Hazard Mater 186:502–507PubMedGoogle Scholar
  86. 86.
    Rao G, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep PurifTechnol 58:224–231Google Scholar
  87. 87.
    Huang S, Chen D (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. JHazard Mater 163:174–179Google Scholar
  88. 88.
    Dogan M, Turkyilmaz A, Alkan M, Demirbas O (2009) Adsorption of copper (II) ions onto sepiolite and electro-kinetic properties. Desalination 238:257–270Google Scholar
  89. 89.
    Wang Y, Chen J, Cui Y, Wang S, Zhou D (2009) Effects of low-molecular weight organic acids on Cu(II) adsorption onto hydroxyapatite nanoparticles. J Hazard Mater 162:1135–1140PubMedGoogle Scholar
  90. 90.
    Shukla S, Gaikar V, Pai R, Suryavanshi U (2009) Batch and column adsorption of Cu (II) on unmodified and oxidized coir. Sep Sci Technol 44:40–62Google Scholar
  91. 91.
    Souza DM, Andrade AL, Fabris J et al (2008) Synthesis and in vitro evaluation of toxicity of silica-coated magnetite nanoparticles. J Non-Cryst Solids 354(42):4894–4897Google Scholar
  92. 92.
    Kolodyńska D, Hubicki Z, Skiba A (2009) Heavy metal ions removal in the presence of 1-hydroxyethane-1,1- diphosphonic acid from aqueous solutions on polystyrene anion exchangers. Ind Eng Chem Res 48(23):10584–10593Google Scholar
  93. 93.
    Farajtabar A, Gharib F, Jamaat P, Safari N (2008) Complexation of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin with zinc (II) ions in aqueous solution. J Chem Eng Data 53 (2):350– 354Google Scholar
  94. 94.
    Bayramo G, Arica M (2008) Removal of heavy mercury (II), cadmium (II) and zinc (II) metal ions by live and heat inactivated Lentinus edodes pellets. Chem Eng J 143(1–3):133– 140Google Scholar
  95. 95.
    Fan T, Liu Y, Feng B, Zeng G, Yang C, Zhou M, Zhou H, Tan Z, Wang X (2008) Biosorption of cadmium (II), zinc (II) and lead (II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. J Hazard Mater 160:655– 661PubMedGoogle Scholar
  96. 96.
    Chen A, Yang C, Chen C, Chen C, Chen C (2009) The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. J Hazard Mater 163:1068–1075PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Materials and Nanotechnology Group – Ceramics, Refractories, and Building Materials DepartmentNational Research Centre, Centre of Excellence for Advanced SciencesCairoEgypt
  2. 2.Faculty of Science, Chemistry DepartmentMenofia UniversityShepen AlkomEgypt
  3. 3.Egyptian Water Treatment CompanyMenofiaEgypt

Personalised recommendations